

MENG-260 Thermodynamics

Course Code	Course Title	ECTS Credits	
MENG-260	Thermodynamics	6	
Department	Semester	Pre-requisites	
Engineering	Spring	PHYS-150	
Type of Course	Field	Language of Instruction	
Elective	Engineering	English	
Level of Course	Year of Study	Lecturer	
1 st Cycle	2 nd	Dr Constantinos Hadjistassou	
Mode of Delivery	Work Placement	Co-requisites	
Face-to-face	N/A	None	
Course Days/Times	Course Venue	Student Consultation Hours	
Mon/Wed:		M/W: 14:00-14:30 or by	
14:30-16:00		appointment with instructor	
	E-mail	Office Room	

Objectives of the Course:

The main objectives of the course are to:

- State the principle of energy (physics) and its relevance to engineering and society;
- Outline what dimensions, units, systems and control volumes constitute;
- Explain system properties, states, equilibrium, temperature, pressure;
- Describe internal and mechanical forms of energy and heat transfer;
- Present the concept of work and mechanical forms of work;
- Detail the First Law of Thermodynamics and energy conversion;
- Help attendees understand T-v, P-v and P-T diagrams, ideal & compressible gases;
- Analyse the energy balance of closed systems, enthalpy & specific heats of solids and gases;
- State the Second Law of Thermodynamics, explain heat engines & Carnot cycle;
- Introduce the concept of entropy, entropy change in solids, liquids and ideal gases;
- Elaborate on compressor work and entropy balance;
- Explain exergy change of systems and exergy destruction;
- Present the Otto, Diesel, and Brayton cycles;
- Summarize refrigeration cycles and heat pumps, vapour compression cycles & cogeneration;

Learning Outcomes:

After completion of the course students are expected to:

- Understand the concept of energy (physics) & thermodynamics;
- Appreciate the significance of dimensions, units, control volumes & systems;
- Learn about system properties, states, equilibrium, temperature, pressure;
- Be able to explain internal and mechanical energy & heat transfer;
- State the relationship between heat and work;
- Be able to explain the First Law of Thermodynamics and energy conversion;

- Utilize T-v, P-v and P-T diagrams, ideal & compressible gases;
- Apply energy balance to closed systems, enthalpy & specific heats of solids & gases;
- Know what is conservation of mass, energy analysis in steady-flow systems & devices;
- Apply the Second Law of Thermodynamics to heat engines and the Carnot cycle;
- Comprehend the concept of entropy & entropy change in solids, liquids and ideal gases;
- Determine compressor work and entropy balance;
- Analyse exergy change of systems and exergy destruction;
- Know the characteristics of the Rankine, Otto, Diesel, and Brayton cycles;
- Obtain the efficiencies of heat pumps, vapour compression cycles & cogeneration.

Course Contents:

- Thermodynamics and energy;
- Dimensions, units, systems, and control volumes;
- Properties, states, equilibrium, temperature, pressure;
- Forms of energy: internal & mechanical, heat transfer;
- Concept of work, mechanical forms of work;
- First Law of Thermodynamics, energy conversion;
- Phase-change diagrams: T-v, P-v and P-T diagrams; ideal gases & compressibility;
- Energy balance of closed systems, enthalpy and specific heats of solids & gases;
- Conservation of mass, energy analysis of steady-flow systems & devices;
- Second Law of Thermodynamics, heat engines, Carnot cycle;
- Entropy, entropy change in solids, liquids and ideal gases;
- Compressor work and entropy balance;
- Exergy change of systems and exergy destruction;
- Rankine cycle, Otto cycle, Diesel cycle, Brayton cycle;
- Refrigeration cycles and heat pumps, vapour compression cycles & cogeneration.

Teaching Methods:

Lectures, problem sheets, exercises, exams

Assessment Methods:

Final Examination (comprehensive)	40%		
Mid-Term Examination	25%		
Homework	15%		
Assignment	15%		
Class Participation	5%		

Required Textbooks:

Authors	Title	Publisher	Year	ISBN
Moran J., Shapiro	Fundamentals of	Wiley	2014	9781118412930
N. M. and	Engineering			
Boettner D. D.	Thermodynamics, 8 th Ed.			

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN	
Blundell J. S. and	Concepts in Thermal	Oxford	2010	9780199562107	
Blundell M. K.	Physics, 2 nd ed.	University			
	-	Press			
Rajput R. K.	Engineering	Laxmi	2007	9780763782726	
	Thermodynamics	Publications			