Natural gas compression performance calculations

Constantinos Hadjistassou, PhD
Assistant Professor
Programme in Oil & Gas (Energy) Engineering
University of Nicosia
Web: www.carbonlab.eu
Oct., 2015
Overview

- Two topics:
 - Gas hydrates
 - Sub-ambient flow in pipelines

- Principles of gas compression
Two topics
Two topics

- Gas hydrates
- Sub-ambient flow in pipelines
Gas hydrates

- Besides posing problems for flow assurance gas hydrates in the future could be a source of NG fuel
- Several research programs target their economic extraction
Sub-ambient pipeline flow

- Is it possible for a pipe to transmit fluids at sub-ambient pressure i.e. below atmospheric pressure?

- Pressure drop (Δp):

\[\Delta p = p_1 - p_2 = \frac{128 \mu \ell Q}{\pi D^4} \]

- A pressure differential drives flow. Therefore, $p_2 < p_1$
Major pump needs in an LNG facility

- Amine circulation
- Scrub column & fractionation towers
- LNG product pumps & loading pumps
- Seawater pumps (if seawater cooled)
- Hot oil pumps
- 2-4 pumps per LNG tank
Gas compression performance
Definitions

- Pressure (P) is the direct force per unit area normal to the surface
 \[P = \frac{F}{A} \]

- **Absolute pressure** (P_{abs}) is measured relative to absolute vacuum (absolute zero pressure)

- **Gage pressure** (P_G) is the difference between absolute & atmospheric pressure

- **Vacuum pressure** is below atmospheric

- An **ideal gas** is an imaginary substance which obeys $PV=RT$
More definitions

- **Incompressible substance** is the one whose specific volume (or density) remains constant when subject to a pressure.

- A **reversible process** can be reversed w/o leaving any trace on the surroundings. Net heat & net work exchange btw stm&surroundings = 0

- **Enthalpy** is the *thermodynamic potential* of a system denoted by h (units: J or BTUs):

$$h = u + P\nu$$
Compression performance

- Interested in calculating:
 - Compressor head (inlet & outlet pressure)
 - Discharge temperature
 - Compressor efficiency
 - Sizing of compressor (hp)
Gas-turbine driven centrifugal compressor
Reversible isothermal gas compression

- Purpose of compression: mechanical work raises gas suction pressure to higher discharge pressure
- Reversible shaft work of a compressor, \(w_s \), for open process for \(P_1 \) to \(P_2 \)

\[
 w_s = -\Delta h = - \int_{P_1}^{P_2} v dP, \tag{1}
\]

where: \(h = \) enthalpy, \(h = u + pv \)
\(v = \) specific volume \((m^3/kg \text{ or } ft^3/lb)\)
-ve sign indicates that work is being done on the compressor
- Since \(V = RT/P \), for an isothermal process the reversible shaft work of an ideal gas is:

\[
 w_s = -RT \ln(P_2/P_1)/MW, \tag{2}
\]

where: \(R = \) gas constant \((Nm/kg \cdot K \text{ or } Btu/lbmol \cdot R)\), \(MW = \) molec. weight
Reversible **adiabatic** heat transfer

- Heat transfer from compression into fluid
- Thermal energy absorbed by the gas phase
- Polytropic process:
 \[P V^n = C \] \hspace{1cm} (3)

- γ is the *polytropic exponent*; $C = \text{constant}$
Adiabatic work done on compressor:

\[w_s = \frac{\gamma RT_1}{MW(\gamma - 1)} \left[1 - \left(\frac{P_2}{P_1} \right)^{(\gamma-1)/\gamma} \right] \] \hspace{1cm} (4)

Ratio \((P_2/P_1) \) is the compression ratio

\(T_i \): inlet temperature. The specific heat ratio, \(\gamma \), is:

\[\gamma = \frac{C_P}{C_V} = \left[\frac{C_P}{C_P - R} \right] \] \hspace{1cm} (5)

Since \(R = C_P - C_V \)

Where \(C_P \) is specific heat @ constant pressure &

\(C_V \) the specific heat @ constant volume [of the gas]
Outlet compressor temperature

- For a reversible adiabatic compression of an ideal gas, outlet temp:
 \[T_2 = T_1 \left(\frac{P_2}{P_1} \right)^{\frac{\gamma-1}{\gamma}}. \]
 \[(6) \]

- Empirically, \(T_2 \) can be obtained from:
 \[T_2 = T_1 \left(1 + \left(\frac{P_2}{P_1} \right)^{\frac{\gamma-1}{\gamma}} - 1 \right) / \eta_{IS}, \]
 \[(7) \]

- \(\eta_{IS} \) is the entropic efficiency with heat losses. Thus:
 \[P_v^\kappa = C \]
 \[(8) \]

\(\kappa \) is the polytropic constant (empirically obtained)
Outlet compressor temperature

- κ replaces γ in eqn (7):

\[
W_s = \frac{\kappa RT_1}{MW(\kappa - 1)} \left[1 - \left(\frac{P_2}{P_1} \right)^{(\kappa-1)/\kappa} \right].
\]

- If κ is not known, γ can be used.
- Assumption: all gas components behave like an ideal gas.
- Using eqns (1)-(9) we can determine:
 - Isothermal work to compress a gas from pressure (P_1) into (P_2)
 - Adiabatic work to compress a gas from pressure (P_1) into (P_2)
 - Discharge temp. for adiabatic compression
- Example #1
Multi-stage compression

- Multi-staging: final pressure is attained by more than one stages/steps
- Reasons for multi-staging:
 - Cool the gas btw stages thereby increasing efficiency by decreasing gas volume & work.
 - Material limitations. 150°C limit for construction materials, seals, lubricants.
 - Recommended temp. decreases with high pressure
- Limiting temps define compression ratios to btw 3:1 to 5:1
- Min work when each stage does same amount of work (~press ratio/stage)
- Pressure ratio (PR):

\[
PR = (P_2/P_1)^{1/m}
\]

(10)

- \(m \) = number of stages
- Example #2
Compressor efficiencies

- **Reversible adiabatic (or isentropic efficiency),** η_{IS}:
 \[\eta_{IS} = \frac{W_s}{W_{s,\text{ACTUAL}}} \] (11)

- W_s is determined from eqn (4)

- Centrifugal compressors’ efficiency given by **polytropic efficiency**, η_P:
 \[\eta_P = \frac{(\gamma-1)/\gamma}{[(\kappa-1)/\kappa]} \] (12)

- Polytropic efficiency > adiabatic efficiency.

- Discharge conditions can also be determined from:
 \[T_2 = T_1 \left(\frac{P_2}{P_1} \right)^{(1/\eta_P)(\gamma-1)/\gamma} \] (13)

- η_P is the polytropic efficiency

Example #3
Capacity & power calculations

- Compressibility factor, \(Z \), is:

\[
Z = \frac{P_v}{RT} \tag{14}
\]

- \(Z \) is due to gases deviating from ideal gas law. \(Z = \frac{V_{actual}}{V_{ideal}} \)

Power Requirements
- For isentropic compression & efficiency:

\[
Power = \dot{m} \cdot z_{avg} \cdot w_s \tag{15}
\]

- \(\dot{m} \) is the mass flow rate; \(z_{avg} \) is the average of the inlet & outlet compressibility factors
Reciprocating compressors

- Power estimation:

\[
\text{Brake HP} = 22 F \text{ PR} m \text{ MMacfd} \quad (16)
\]

- Brake HP is work delivered to compressor, \(F \), correction factor:
 - For single stage (\(m=1 \)), \(F = 1.0 \)
 - For double stage (\(m=2 \)), \(F = 1.08 \)
 - For three-stages (\(m=3 \)), \(F = 1.10 \)

- PR = pressure ratio; HP = horsepower; \(m \) = # of stages

- Vendors rate compressors on 14.4 psi [for simplicity] than 14.7 psi

- Equation 16:
 - Developed for large, slow-speed compressors of 300-400 rpm
 - Gases with \(\text{SG}=0.65 \) & \(\text{PR}>2.5 \)
 - For \(0.8<\text{SG}<1.0 \), use 20 in eqn (16), if \(\text{SG}<0.8 \) use 22
Flow rate

- Volumetric flow rate (Q) given by:

\[Q = \text{scfm} \left(\frac{14.7}{P_i \text{ (psia)}} \right) \left(\frac{T_i \text{ (°R)}}{520} \right) \left(\frac{z_i}{z_R} \right) \]

(17)

- Where “1” & “R” denote inlet & reference conditions. Reference state: 14.7 psia @ 60°F (15.6°C); scfm standard cubic feet

- Example #4
Compressor efficiencies

TABLE 4.2

Typical Cost Effective Ranges of Compressors Used in Gas Processing

<table>
<thead>
<tr>
<th>Inlet Flow Rate(^a) acfm (m(^3)/h)</th>
<th>Maximum Pressure psig (barg)</th>
<th>Isentropic Efficiency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inlet</td>
<td>Discharge</td>
</tr>
<tr>
<td>Reciprocating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single stage</td>
<td>1 - 300 (2 - 500)</td>
<td>No limit</td>
</tr>
<tr>
<td>Multistage</td>
<td>1 - 7,000 (2 - 12,000)</td>
<td>No limit</td>
</tr>
<tr>
<td>Centrifugal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single stage</td>
<td>50 - 3,000 (80 - 5,000)</td>
<td>No limit</td>
</tr>
<tr>
<td>Multistage</td>
<td>500 - 200,000 (800 - 350,000)</td>
<td>No limit</td>
</tr>
<tr>
<td>Oil-free rotary screw</td>
<td><40,000 (70,000)</td>
<td><150 (10)</td>
</tr>
<tr>
<td>Oil-injected rotary screw</td>
<td>< 10,000 (20,000)</td>
<td>< 400 (30)</td>
</tr>
</tbody>
</table>

\(^a\) Compressor-gas volumes are based upon actual gas volumes at suction temperature and pressure.
Thanks for your attention!