Ocean wave patterns & ocean currents

Constantinos Hadjistassou, PhD Associate professor University of Nicosia

Web: www.carbonlab.eu

Oct./Nov., 2020

Overview

(2)

- Kelvin wave pattern
- Froude's number
- Reynold's number
- Model testing
- Ocean currents & Ekman transport
- Ocean circulation

The allure of the seas

How are waves generated by ships?

4

• Consider immersed body:

• Now consider a ship at the free surface:

What form do surface waves assume?

The Kelvin wave pattern

- 5
- Kelvin wave pattern is a mathematical form of a wave system
- Wave pattern is created by pressure point source @ free surface
- Wave system made of: a) transverse & b) divergent waves

Bow & stern wave patterns

- (A) Divergent (1) and transverse (2) waves
- (B) Stern divergent (1) & transverse (2) waves &
- (B) Bow divergent (3) & transverse (4) waves

Kelvin wave system

7

- Interference of wave patterns matters
- When wave crests from bow & stern coincide:
 - o They result in larger waves
 - Dissipate more energy
 - Increase vessel's drag
- When bow wave crests coincide with stern troughs then waves become attenuated

Kelvin wave pattern (2)

Characteristics of wave pattern

- Divergent wave crests diminish slower than divergent cusps (tip)
- Transverse wave system speed is given by: $V = \sqrt{\frac{g\lambda}{2\pi}} = U_{ship}$ (1)
- Wavelength of transverse waves is: $\lambda = \frac{2\pi V^2}{g}$ (2)

Froude number (Fn)

Froude # is defined as ratio of flow inertial to gravitational effects:

$$Fn = \frac{V}{\sqrt{g}\ell} \tag{3}$$

where V is the characteristic flow velocity & ℓ is a characteristic length. Aka speed-length ratio

- Fn # is an index of ratio of force due to acceleration of a fluid particle to the force due to gravity weight
- Fn # is used to determine wave making resistance (drag) of a ship & allows comparison of different bodies with similar wave patterns

Shallow water wave patterns

• In shallow water:

$$c = (gd)^{1/2}$$

- Depth $Fn_d = V/(gd)^{1/2}$
- Subcritical speed:
 - \circ Speed < Fn_d=1.0
- Critical speed:
 - \circ Speed = $Fn_d = 1.0$
- Supercritical speed:
 - \circ Speed > Fn_d =1.0

Froude number (2)

• Utility of Fn #: (a) Hydraulic jump, flows in rivers & open conduits, spillway flow of a dam

• Hydraulic jump video

Fr	y_2/y_1	Classification	Sketch
<1	1	Jump impossible	\overrightarrow{V}_2 $V_2 = V_1 \longrightarrow$
1–1.7	1–2.0	Standing wave or undulant jump	y_1 y_2
1.7–2.5	2.0-3.1	Weak jump	
2.5–4.5	3.1–5.9	Oscillating jump	200
4.5-9.0	5.9–12	Stable, well-balanced steady jump; insensitive to downstream conditions	277
>9.0	>12	Rough, somewhat intermittent strong jump	

Uses of Froude's number

Reynold's number

• Re # is the ratio of the *inertial* to *viscous* effects:

$$Re = \frac{Intertial\ force}{Viscous\ force} = \frac{\rho V \ell}{\mu} \qquad (8)$$

where μ is the dynamic (absolute) viscosity (Pa·s=(N·s)/m² or kg/(s·m)) & v is kinematic viscosity (v= μ/ρ , m²/s)

- $Re_m = Re_p$ is a pre-requisite for dynamic similarity of flows when viscous effects are important
- *Re #* is used to predict similar flow patterns in different flow situations

Reynold's number (2)

• Applications of *Re #*:

- O Scaling in fluid dynamics e.g., ships, platforms, aircraft, propeller design, ...
- o Characterise flow regimes e.g., laminar, transition, turbulent flow,
- Pipeline engineering,
- o Aircraft design, etc.

Model testing

- Concept of similarity forms the basis of model testing
- Experimenting with prototypes is costly & time consuming
- Why not use smaller geometrically similar models?
- Models range from aircraft, submarines, vehicles, trucks, harbours, oil & gas platforms, cities, dams, propellers, ...

Dynamic similarity

- Between ship and model 3 conditions must be satisfied:
 - o 1. Geometric similarity: shape (non-dimensional) parameters α_i of hull must be the same
 - o 2. Reynold's #: must be the same
 - o 3. Froude's #: must be the same

Model testing (2)

- Both Re & Fn numbers cannot be satisfied simultaneously since: $V \propto (1/l)$ and $V \propto (gl)^{1/2}$
- Decide which d/less group is most important to satisfy
- Distorted models are then corrected

Example #6

19

• Drag coefficient in fluids with Re#: ~10⁴

Example 6

• Ex#6

Fig. 1 Drag coefficient v Reynolds number for a boundary layer over a flat surface.

Dotted line depicts partly laminar & partly turbulent flow.

(21)

Ocean currents and ocean circulation

Ocean (wind) waves

Ocean currents

- Ocean surface currents are water masses in motion
- Currents transfer heat from warmer to cooler areas
- Currents are tied to movement of nutrients in the oceans
- Affect transport of pollution substances

- 1. Surface winds
- 2. Sun heat
- 3. Coriolis effect
- 4. Gravity

Importance of ocean currents

- Currents impose drag forces on fixed or floating platforms
- Ocean currents transport sea ice & marine debris at sea
- Cause deposition of ocean bottom material
- Influence corrosion rates of various materials

Phytoplankton transport, Honshu, Japan

Ocean currents

- Winds blowing on sea surface generate frictional & pressure forces
- Wind generates both ocean waves & surface currents
- Currents affected by Coriolis effect, land masses & continental shelves

World's oceans have 40 currents

Ocean currents

- Ocean currents are either wind driven or density triggered
- Causes of sea currents comprise:
 - 1) Tidal motion;
 - 2) Global circulation due to temp. differences & Coriolis effect;

Garrison (2012)

- 3) Wind forces;
- 4) River discharge (hydraulic currents);
- 5) Internal waves (density changes);
- 6) Eddies
- 7) Self-edge currents caused by ΔTs

Shoes & bathtub toys as drifters

- 30,910 shoes
- 01/1992:29,000floating toys
- 6 months
- 2,400km

Ekman transport

- Why does water, icebergs & vessels move 90° to wind currents?
- Why do ocean currents rotate CLW in N. hemisphere & ACLW in S. hemisphere?
- Attributed to balance btw frictional effects & Coriolis force

Ekman's "spiral" (1)

- Coriolis effect transports water molecules at 45°
- Energy's imparted at lower water layers
- Spiral extends btw –100m to –200m
- Surface currents manifest at 45° & net Ekman transport at 70°

Ekman "spiral" (2)

- Ekman transport in gyres <90°
- Actual water deflection is ≈45°
- Due to interaction btw Coriolis effect & pressure gradient

Ocean currents

31

• Theory

Exercise #7

• Ex#7

Fig. 2 Various ocean current velocity profiles

(33)

Thanks for your attention!