Fixed and Floating Offshore Systems

Constantinos Hadjistassou, PhD Associate prof. University of Nicosia

Web: www.carbonlab.eu

Nov./Dec., 2020

Overview

2

- Fixed platforms:
 - Jacket (steel) installations
 - Monopods
 - Compliant towers
 - Guyed towers
- Gravity based platforms
- Tension leg platforms (TLPs)
- Jack-up rigs
- Semi-submersibles
- Spar platforms

Overview (2)

3

- Floating, production, storage & offloading (FPSOs)
- Drillships
- Floating LNG (FLNG)
- Floating Storage and Regas Unit (FSRU)
- Offshore mooring systems
- Subsea systems

Salvaging the San Juan sub?

- Diesel-electric sub lost Nov. 16, 2017
- Crew: 44 including first female sailor
- Discovered by Ocean Infinity at 3,000 ft
- It is feasible to recover the vessel?
- Probably yes at a cost of \$100m
- Video: Argentina submarine
- Kursk: https://bit.ly/2QocwT9
- Dutch Mammoet-Smit

Offshore O&G seascape

5

- Offshore O&G exploration covers ~7,100 fields in >120 countries
- Offshore platform (fixed, gravity & floating) count: 14,500
- Subsea components amount to ~8,200
- About 30,000 offshore pipelines siphon O&G to shore

Offshore fields development options

• Fixed foundations, moored & tethered & subsea installation

Offshore O&G systems

Floatings Systems Overview

Production systems

 FPSOs account for most of *floating* offshore oil production systems

Fixed platforms

Types of fixed offshore platforms

- Drilling/well-protector platforms
- Self-contained platforms (template and tower)
- Production platforms (control rooms, compressors, storage tanks, treating, ...)
- Auxiliary platforms (pumping/compressor stations, oil storage, quarters platforms or production platforms,
- Quarters platforms
- Flare jacket and flare tower platforms
- Bridges
- Heliports

Jacket platforms

- *Pilings*: steel tubular members secure platform to seabed
- Cylindrical members:
 - Pose less resistance to ocean waves & currents
 - o Reduce mass of steel & weight of rig
 - Lower material cost
- Waves should not wet the deck

Framed offshore structure

- Limited to water depth of 1,500ft
- Bullwinkle base: 400×480ft
- Pilings: $7ft \times 2" \times 400ft$ deep
- 300ft of water: 3000t of steel + 1000t pilings, legs: 54"
- 1,500ft of water: 50,000t of steel + 15,000t pilings, legs, d: 90", pilings, d: 75"

Installing a jacket platform

- Hydraulic jacks or winches move to barge
- Base structure needs to float
- Flooding lower structure to seabed
- Tugs facilitate positioning of jacket base
- Pilings secure platform to seabed

Mono/tri-pods

17

- Used for single wells
- Low cost solution
- Uses a conductor
- Alternative to wet tree

Jack-up rigs

- Mobile platform that rests on seabed
- Make up 60% of MODUs
- MODUs are divided into:
 - Jack-ups with cylindrical legs
 - Jack-ups with truss legs

Mat supported jack-up

Jack-ups

Legs can enter seabed

Working depth: 150m-190m

Generally not self-propelled

No. of jack-ups: 540 (2013)

• Leg no vary: 3, 4, 6, 8

Legs powered by hydraulics or motors

• Merits:

Good stability due to fixed legs

Relatively economical

Suitable for different seafloor soils

Drawbacks:

- Hard to tow; sensitive to waves
- o Working depth: 0-100m
- Large legs pose vibration issues

Guyed towers

- Fixed platforms in water depth of ~300m
- Clump weights on guy lines allow tower to sway or "comply" with waves
- Made of tubular steel elements
- Dry wellheads installed on platform
- Anchored to seabed with lines

Compliant towers

- Water depth range: 1,000-3,000ft
- Behaves like reed; waves pass thru before structure respond
- Slender base (140ft × 100ft)
- Sway in currents & waves: 10-15ft
- Require less steel than jacket rigs
- Considerable mass & buoyancy at upper zone
- 1,700ft: 30,000t of steel; 7,000t pilings

Pilings

22

• Steel pilings secure fixed structure to seabed

Depth of pilings extend up to 400ft (130m)

Pilings driven only during favourable weathe

Pilings (2)

- Suction could initially be applied
- In swallow-water jacket is welded to pilings
- In deepwater grout secures jacket to pilings

Gravity based platforms

- Emerged in 1970s; made of reinforced or pre-stressed concrete
- Require hard seabed eg, clay
- Secured on site by their sheer weight
- Cumbersome to transport & position
- Require no anchoring

Gravity based platforms (2)

(25)

- Steel skirts secure platform to seabed
- Flowlines embedded in concrete legs

Video

(26)

• Troll; 20"

Compliant towers

27

- Can sway 10-15ft off centre in extreme cases
- Since most of "mass" on upper sections, structure is "invisible" to waves
- At d>500m jacket platforms become impractical
- Why?
 - Due to stiff response of the structure

Black Sea marine expedition

Theory

(30)

• Theory #3

Drag coefficient

- Drag coefficient (C_D) quantifies drag or resistance of an object in a fluid
- C_D emanates from skin friction & form (pressure) drag

0.50

C_D of various shapes @ various Re#

Keulegan-Carpenter number

33

- The *Keulegan–Carpenter* number (period number) quantifies the relative importance of drag forces over inertia forces for bluff objects in oscillatory fluid flows $K_C = \frac{VT}{I}$
- Low K_C : inertia dominates; high K_C turbulence dominates

C_M vs K_C# & Re#

- 34
- Inertia effects dominate if K_c <10.0
- Inertia & drag forces significant if $10.0 < K_C < 20.0$
- Drag forces dominate of $K_C > 20.0$

Fig. 2 C_M vs K_C at various Re#

C_D vs K_c# at various Re#

Values of ξ

(36)

• Recall:

$$\frac{F_{D_{\text{max}}}}{F_{I_{\text{max}}}} = \xi \left(\frac{H}{D}\right)$$

$$\xi = \left(\frac{1}{4\pi}\right) \left(\frac{C_D}{C_M}\right) \left[\frac{(2k(H/2+d) + \sinh(2k(H/2+d))}{\sinh(kd)(\sinh k(H/2+d))}\right]$$

Fig. 4 Values of ξ vs H/ λ

	$H/\lambda = 0.03$		$H/\lambda = 0.07$	
d/λ	(2k)(d+H/2)	ξ (H/D)	(2k)(d+H/2)	ξ (H/D)
0.03	0.565	0.847	0.817	0.866
0.07	1.068	0.367	1.320	0.378
0.15	2.074	0.178	2.325	0.187
0.30	3.958	0.105	4.210	0.115
0.50	6.472	0.090	6.723	0.101
1.00	12.755	0.0875	13.066	0.102
∞	∞	0.0875	∞	0.098

Exercise

(37)

- Example#8
- Example#9

Waves & wind loads

38

Wave induced forces outweigh wind related forces

Floating production systems (FPS)

- FPSs (eg floating vessels) present economic & technically viable option
- System can be recycled; lower risk of risky assets
- Quick disconnect during contingencies eg, hurricane, earthquake, ...

Tension leg platforms (TLPs)

- Vertical tendons hold the platform in place
- Tension in tubular tethers minimizes heave, pitch &
- Tendons permit sway, surge & yaw degrees of freedom
- TLPs water depth limit up to 1,500m

TLPs

- Tendons resemble drilling collars (26cm (d) × 9.5m (L), bore: 7.5cm, t = 9.25cm)
- Mooring compartment adjusts wire tension
- Steel piles penetrate 55m subsea
- Feature dry trees
- Due to tension TLPs are designed heavier & stronger

TLPs

Advantages of TLPs include:

- o (i) Mobility and reusability;
- o (ii) Stability (min. minimal vertical motions)
- o (iii) Low cost increase as a function of increasi
- o (iv) Deepwater capability;
- o (v) Low maintenance costs.

Drawbacks of TLPs comprise:

- o (i) High initial (capital) costs;
- o (ii) High subsea costs;
- o (iii) Fatigue (resonance) of tension legs;
- o (iv) Difficult maintenance of subsea systems;
- o (v) Little or no storage.

Olympus TLP

- Water depth: ~3,100ft (945m)
- Displacement: 120,000t; 406ft,~125m tall; column spacing: 250ft, 76m
- Production capacity 100,000 boe/d
- Tendons offer vertical restraint
- Direct Vertical Access (DVA) capability for drilling & production
- Stiff responses in heave, roll & pitch
- Compliant responses in surge and sway

 Limited to WD<1500m due to tendon resonance (fatigue)

Olympus TLP video [4m]

Olympus & Mars TLPs (courtesy Shell)

TLPs learning curve for Shell

- Innovations: simplification of hull systems & reduction in hull entry
 - Pre-install tendons
- Learning Curve lower costs
 - Standardisation & repeatability
 - System improvements (well productivity)

Spars

Spars

• Merits:

- o (i) Made of deep-draft hollow caisson
- (ii) Deep-draft yields low heave & pitch motions
- o (iii) Water depth range: 500-3,000m
- (iv) Full drilling & production capabilities
- o (v) Dry trees & surface BOP
- o (vi) Steel catenary risers
- (vii) Cost insensitive to water depth
- o (viii) Relocatable structure
- (ix) Potential of drilling & processing
- o (x) +ve GM, COG below COB

Spars

Disadvantages of spars comprise:

- Open-sea mounting topside to hull;
- Little storage capacity, tied to pipeline or FSO;
- Relatively difficulty to transport (mostly built in Finland)
- Need to damp vortex induced vibrations (VIVs)
- Truss spar is the evolution of the classic spar
- Truss spar consists of:
 - Hard tank provides most of the buoyancy
 - Truss section supports the keep tank to hard tank
 - Keel tank contains fixed ballast & connects export p/lines
 & flow lines

Evolution of spars

Semi-submersibles

Semi-submersible platforms

- Capable of drilling & production operations
- Increased draft provides stability
- Lack propulsion system (longer transit times)
- Require temporary anchoring systems (8 to 12) or dynamic positioning (DP) system
- Towed by tug-boats or dry transport
- Lower rates than drillships (\$4k/d)
- Heave compensators & marine risers protect drill bit
- Operational envelope:
 4,000m<D_{H2O}<500m

Floating production systems (FPS)

- Either self-propelled or towed to location
- Draft increased by flooding buoyancy tanks
- Kept in position by DPS or mooring system
- Structure built of 4, 6, 8 or more columns
- Merits:
 - o Good stability incl. in rough seas
 - Good mobility at small T
 - Large deck area
- Shortcomings:
 - Low propulsion speed <8kn
 - Expensive to built >\$100m
 - Sensitive to load

Blind Faith

• Year: 2008

• WD: 6500ft

• Δ=40,000t

• Chevron & Kerr-McGee

• \$900m

• 65,000 bpd

Ichtys LNG central processing platform

(54)

- Video (Icthys)
- Specs:
 - o 8.4 mtpa LNG
 - o 1.6 mtpa LPG
 - o 100,000 bpd of condensates

FPSOs

FPSOs

- Storage & offloading alleviates need for pipelines & on hore facilities
- Weathervaning (turret-moored) in other areas
- Newbuild or conversion
- Storage needs:
 - o (i) parcel size, (ii) duration of offloading, (iii) oil remaining in tanks (iv) tank inspection in service
- Parcel size: amount of oil offloaded to tanker (1 mbbl for WA)
- Offloading duration: ~24 hrs
- Storage required = parcel size + 4 days of production

Bonga FPSO

Drillships

- Swift transit & manoeuvring characteristics
- Less idle time but more expensive to operate
- Used only for drilling ops
- Retained in place by dynamic positioning (DP) via thrusters
- Energy intensive operations (w/o anchoring)
- Operational water depth = 2,500m
- Dual handling capabilities; centre-line moon-pool
- World fleet ~80 ships | Cost = ~\$600m

Drillships

• Merits:

- Good mobility
- High self-propulsion speed: 8-14 knots
- Large load & storage capabilities
- o Water depth value ~6,000m

• Weaknesses:

Shallow draft make drillships sensitive to waves

Floating LNG

- Obviate need for submarine transmission pipeline(s)
- Innovation: onboard liquefaction
- 3.5-5.5 mtpa (2-3tcf)
- Working life: 30-40 yrs
- Issues:
 - LNG sloshing
 - Topsides: equipment miniaturization
 & access for maintenance
 - Hull: no dry-docking
 - Mooring systems: must not interfere with production & offloading
 - Safety considerations
 - Offloading: sea motions during transfer operations
 - Metocean design conditions:100-year; 10,000 year load

Courtesy: Royal Dutch Shell

Prelude FLNG project

- Expected to commence operation in 2017; offshore NW Australia
- Capacity: 5.3mtpa (3.6mpta *LNG*, 1.3mtpa *condensates*, 0.4mtpa *LPG*)
- Construction commenced in Oct., 2012
- FLNG Prelude 1st in the world
- Delivery date: 2017
- Cost: \$14 bn
- 600,000 t | Length: 488m
- Hull floated on Dec. 3rd, 2013
- Build by SHI, S. Korea

Prelude FLNG in numbers

- >600 engineers worked on the facility's design options
- 93m by 30m the turret secured to the seabed by mooring lines
- 50 tonnes/hr cold H₂O to be drawn from the ocean to help cool the NG
- 20-25 years is the time the Prelude FLNG facility will stay at the location to develop gas fields
- >200 km is the distance from the Prelude field to the nearest land
- 175 Olympic-sized swimming pools could hold the same amount of liquid as the facility's storage tanks
- **6 of the largest aircraft carriers** would displace the same amount of water as the facility

Floating NG liquefaction

63

• Fluids:

- \circ CH₄, C₂H₆, C₃H₈, C₄H₁₀
- o Condensates, CO₂, H₂O, etc

Onshore vs offshore LNG

(a)

Prelude FLNG project (2)

Prelude FLNG turret & mooring system

- Turret allows ship to weathervane
- Turret height: 100m, diameter: 26m
- Mass: 11,000 tons
- Mooring provides station keeping 4×4 (16 lines)
- Swivel stack to enable transfer of fluids (gas)

(67)

Offshore mooring systems

Offshore mooring systems

- Objectives: secure floating structure in position with minimal forces
- Two types of mooring systems:
 - o Temporary mooring: semi-subs, work vessels, dredgers, pipe-laying vessels, ...
 - o Permanent mooring: TLPs, F(D)PSOs, Spars, FPS, ...
- Classification also based upon:
 - Spread, multi-point mooring (MPM)
 - Single point mooring (SPM)
- Flexibility & tension can be attained by:
 - Line sags due to its weight (eg, chain line)
 - Action of buoyancy on floater and line
 - o Material flexibility: nylon, propylene, wire lines, ...
- Traditionally, steel wire rope in the middle & chains at sea bed

Line arrangements

Single point tendons

Spread mooring

Taut-leg mooring

- D<100m: chain; 100m>D>300m: wire rope; 2000m>D>3000m: wire + chain; D>2000m: chain, synthetic & wire rope
- Synthetic lines: lighter & more elastic to wire/chain; neutral buoyancy
- But synthetic lines do not [yet] posses the stiffness of metallic ones

Synthetic lines include: MODU

Polyethylene

Polyester

Perdido spar mooring lines

71

- Line length: 3.2km
- Thickness: 245mm
- Total of 9 mooring lines
- Water depth: 2,450m
- Operation date: 2008

Polyethylene rope *vs* steel wire

(72)

• Video

Theory

- Theory #4: Design of offshore structures
- Posted online

Mexico offshore licensing round

- Awarded 8 out of 10 blocks
- BHP Billiton outbid BP
- Investments: ~\$40bn
- New entrants: CNOOC

Acknowledgments

(76)

• Dr. Mike Efthymiou, Shell Netherlands

(77)

Thanks for your attention!