Natural gas compression performance calculations

Constantinos Hadjistassou, PhD

Associate professor

Programme in Oil & Gas Engineering

University of Nicosia

Marine & Carbon Lab: www.carbonlab.eu

Oct./Nov., 2020

Overview

2)

- Two topics:
 - Gas hydrates
 - Sub-ambient flow in pipelines
- Principles of gas compression

www.facebook.com/ogeunic

Inpex Ichthys project's first LNG

4

- 23/10/2018: first LNG shipment to Japan
- Cost: \$40bn; Inpex: 62%, Total: 30%
- Capacity: 8.9mtpa or 10% of Japanese imports
- Video: https://www.youtube.com/watch?v=EROYEZLT_60

Two topics

6

- Gas hydrates
- Sub-ambient flow in pipelines

Gas hydrates

- Besides posing problems for flow assurance gas hydrates in the future could be a source of NG fuel
- Several research programs target their economic extraction

Sub-ambient pipeline flow

8

• Is it possible for a pipe to transmit fluids at sub-ambient pressure ie below atmospheric pressure?

• Pressure drop (Δp) :

$$\Delta p = p_1 - p_2 = \frac{128\mu\ell Q}{\pi D^4}$$

• A pressure differential drives flow. Therefore, $p_2 < p_1$

Major pump needs in an LNG facility

9

- Amine circulation
- Scrub column & fractionation towers
- LNG product pumps & loading pumps
- Seawater pumps (if seawater cooled)
- Hot oil pumps
- 2-4 pumps per LNG tank

Gas compression performance

Definitions

• Pressure (P) is the direct force per unit area normal to the surface

$$P = \frac{F}{A}$$

- Absolute pressure (P_{abs}) is measured relative to absolute vacuum (absolute zero pressure)
- Gage pressure (P_G) is the difference between absolute & atmospheric pressure
- Vacuum pressure is below atmospheric

$$P_{\text{gage}} = P_{\text{abs}} - P_{\text{atm}}$$

 $P_{\text{vac}} = P_{\text{atm}} - P_{\text{abs}}$

 An *ideal gas* is an imaginary substance which obeys PV=RT

More definitions

- Incompressible substance is the one whose specific volume (or density) remains constant when subject to an increase in pressure.
- A *reversible process* can be reversed w/o leaving any trace on the surroundings. Net heat & net work exchange btw stm&surroundings =0
- Enthalpy is the *thermodynamic potential* of a system denoted by *h* (units: *J* or *BTU*):

$$h = u + Pv$$

(b) Quasi-equilibrium expansion and compression of a gas

Compression performance

- Interested in calculating:
 - Compressor head (inlet & outlet pressure)
 - Discharge temperature
 - Compressor efficiency
 - Sizing of compressor (hp)

Gas-turbine driven centrifugal compressor

Reversible isothermal gas compression

- Purpose of compression: mechanical work raises gas suction pressure to higher discharge pressure
- Reversible shaft work of a compressor, w_s , for open process for P_1 to P_2

$$w_{S} = -\Delta h = -\int_{P_{1}}^{P_{2}} v dP,$$

 $w_{S} = -\Delta h = -\int_{P_{1}}^{P_{2}} v dP, \qquad (1)$

(a) Steady-flow system

where: h = enthalpy, h = u + pv $v = \text{specific volume } (m^3/kg \text{ or } ft^3/lb_m)$

- -ve sign indicates that work is being done on the system
- Since V = RT/P, for an *isothermal* process the reversible shaft work of an ideal gas is:

$$w_S = -RT \ln(P_2/P_1)/MW, \qquad (2)$$

where: $R = \text{gas constant } (Nm/kg \cdot K \text{ or } Btu/lbmol \cdot R)$, MW = molec. weight

Reversible adiabatic heat transfer

- Heat transfer from compression into fluid
- Thermal energy absorbed by the gas phase
- Polytropic process:

$$Pv^{\gamma} = C \tag{3}$$

• γ is the *polytropic exponent*; C =constant

Work done on compressor

Adiabatic work done on compressor:

$$w_{S} = \frac{\gamma R T_{1}}{MW(\gamma - 1)} \left[1 - \left(\frac{P_{2}}{P_{1}} \right)^{(\gamma - 1)/\gamma} \right]$$
 (4)

- Ratio (P_2/P_1) is the compression ratio
- T_1 : inlet temperature. The *specific heat ratio*, γ , is:

$$\gamma = \frac{C_P}{C_V} = \left[\frac{C_P}{C_P - R}\right] \tag{5}$$

Since $R = C_P - C_V$

Where C_P is specific heat @ constant pressure &

 C_V the specific heat @ constant volume [of the gas]

Outlet compressor temperature

18

• For a reversible adiabatic compression of an ideal gas, outlet temp:

$$T_2 = T_I (P_2 / P_I)^{(\gamma - I)/\gamma}.$$
 (6)

• Empirically, T_2 can be obtained from:

$$T_2 = T_1 \left(1 + \left[\left(\frac{P_2}{P_1} \right)^{(\gamma - 1)/\gamma} - 1 \right] \right) / \eta_{IS},$$
 (7)

• η_{IS} is the entropic efficiency with heat losses. Thus:

$$Pv^{\kappa} = C \tag{8}$$

 κ is the polytropic constant (obtained empirically)

Outlet compressor temperature

19

• κ replaces γ in eqn (7):

$$w_{S} = \frac{\kappa R T_{1}}{MW(\kappa - 1)} \left[1 - \left(\frac{P_{2}}{P_{1}} \right)^{(\kappa - 1)/\kappa} \right]. \tag{9}$$

- If κ is not known, γ can be used.
- Assumption: all gas components behave like an ideal gas.
- Using eqns (1)-(9) we can determine:
 - Isothermal work to compress a gas from pressure (P_1) into (P_2)
 - Adiabatic work to compress a gas from pressure (P_1) into (P_2)
 - Discharge temp. for adiabatic compression
- Example#2

Multi-stage compression

- Multi-staging: final pressure is attained by more than one stages/steps
- Reasons for multi-staging:
 - Cool the gas btw stages thereby increasing efficiency by decreasing gas volume & work.
 - Material limitations. 150°C limit for construction materials, seals, lubricants.
 - Recommended temp. decreases with high pressure
- Limiting temps define compression ratios to btw 3:1 to 5:1
- Min work when each stage does same amount of work (~pressure ratio/stage)
- Pressure ratio (PR):

$$PR = (P_2/P_1)^{1/m}$$
 (10)

- m = number of stages
- Example#3

Compressor efficiencies

• Reversible adiabatic (or isentropic efficiency), η_{IS} :

$$\eta_{\rm IS} = w_{\rm S}/w_{\rm S, ACTUAL}$$
(11)

- W_s is determined from eqn (4)
- Centrifugal compressors' efficiency given by polytropic efficiency, η_P :

$$\eta_P = [(\gamma - 1)/\gamma]/[(\kappa - 1)/\kappa]. \tag{12}$$

- Polytropic efficiency > adiabatic efficiency.
- Discharge conditions can also be determined from:

$$T_{2} = T_{1}(P_{2}/P_{1})^{(1/\eta_{p})(\gamma-1)/\gamma}$$
 (13)

- η_P is the polytropic efficiency
- Example#4

Capacity & power calculations

22

• Compressibility factor, Z, is:

$$Z = \frac{Pv}{RT} \tag{14}$$

• Z is due to gases deviating from ideal gas law. $Z = V_{actual}/V_{ideal}$

Power Requirements

• For isentropic compression & efficiency:

Power =
$$\dot{m} z_{avg} w_S$$
, (15)

• \dot{m} is the mass flow rate; z_{avg} is the average of the inlet & outlet compressibility factors

Reciprocating compressors

Power estimation:

Brake HP =
$$22 \text{ F PR } m \text{ MMacfd}$$

(16)

- Brake HP is work delivered to compressor, *F, correction factor*:
 - For single stage (m=1), F = 1.0
 - For double stage (m=2), F = 1.08
 - For three-stages (m=3), F = 1.10
- PR = pressure ratio; HP = horsepower; m = # of stages
- Vendors rate compressors on 14.4 psi [for simplicity] than 14.7 psi
- Equation 16:
 - Developed for large, slow-speed compressors of 300-400 rpm
 - Gases with SG=0.65 & PR>2.5
 - o For 0.8<SG<1.0, use 20 in eqn (16), if SG<0.8 use 22

Flow rate

• Volumetric flow rate (Q) given by:

$$Q = scfm \left(\frac{14.7}{P_1(psia)} \right) \left(\frac{T_1({}^{\circ}R)}{520} \right) \left(\frac{z_1}{z_R} \right)$$
 (17)

where "1" & "R" denote inlet & reference conditions. Reference state: 14.7 psia @ 60°F (15.6°C); scfm standard cubic feet

• Example#5

Compressor efficiencies

25

TABLE 4.2
Typical Cost Effective Ranges of Compressors Used in Gas Processing

Maximum Pressure psig (barg)

	_	psig (barg)		
	Inlet Flow Rate ^a acfm (m ³ /h)	Inlet	Discharge	Isentropic Efficiency, %
Reciprocating				
Single stage	1 - 300 $(2 - 500)$	No limit	< 3,000 (200)	75 – 85
Multistage	1 - 7,000 $(2 - 12,000)$	No limit	< 60,000 (4,000)	
Centrifugal				
Single stage	50 - 3,000 (80 - 5,000)	No limit	1,500 (100)	70 – 75
Multistage	500 – 200,000 (800 – 350,000)	No limit	10,000 (700)	
Oil-free rotary screw	<40,000 (70,000)	<150 (10)	<350 (25)	70 – 85
Oil-injected rotary screw	< 10,000 (20,000)	< 400 (30)	< 800 (60)	70 – 85

^a Compressor-gas volumes are based upon actual gas volumes at suction temperature and pressure.

Thanks for your attention!