Natural gas acid gas removal, dehydration & natural gas liquids recovery

Constantinos Hadjistassou, PhD

Associate professor

Programme in Oil & Gas Engineering

University of Nicosia

Marine & Carbon Lab: www.carbonlab.eu

Nov., 2020

Overview

2

- Gas treating
- Acid gas removal
 - o Carbon dioxide (CO₂)
 - Sour gas (H₂S, sulphur species)
- Gas dehydration
- Natural gas liquids (NGLs) recovery & separation
- NGL fractionation

Mexico's first LNG plant?

- Sempra Energy to build Energia Costa Azul LNG plant
- Banja California (50 mi from San Diego)
- Asia deliveries: 12-15 days vs 32 days for US GOM
- Total to buy 9mtpa from US & Mexico
- Competitors:
 - o Global LNG's Calcasieu Pass (LA)
 - o Tellurian
 - NextDecade
 - LNG Limited
 - Mexico Pacific Limited (West coast)
- Panama Canal:
 - o Transit time: 8-10 hours
 - o Transit fees: \$1,000/container
 - o Small yacht: \$2,000
 - o Containership: \$900,000
 - Richard Halliburton payed \$0.36

World's raw gas composition

Total reserves in 2016^{1,3} (%)

Prediction of sour gas reserves^{2,3} (%)

- 1. BP Statistical Review of World Energy June 2017
- 2. H. Devold, ABB, 2013
- 3. A. Demirbas, Springer 2010

Some LNG comparative costs

6

- Aphrodite gas field
- Development costs: \$3.5+2bn
- State revenue: \$9.5bn
- LNG development costs: \$2.5/MMBtu
- Pipeline costs to Egypt: \$1.5/MMBtu
- Shipping costs to Asian markets: \$2/MMBtu
- Regasification costs: \$0.5/MMBtu
- Can we decrease/eliminate the regas costs?

Typical composition of natural gas

7

• Sour gas if H₂S>5.7mg/m³ of gas

Typical Gas Compositions

	Canada (Alberta)	Western Colorado	Southwest Kansas	Bach Ho Field ^a Vietnam	Miskar Field Tunisia	Rio Arriba County, New Mexico	Cliffside Field, Amarillo, Texas
Helium	0.0	0.0	0.45	0.00	0.00	0.0	1.8
Nitrogen	3.2	26.10	14.65	0.21	16.903	0.68	25.6
Carbon dioxide	1.7	42.66	0.0	0.06	13.588	0.82	0.0
Hydrogen sulfide	3.3	0.0	0.0	0.00	0.092	0.0	0.0
Methane	77.1	29.98	72.89	70.85	63.901	96.91	65.8
Ethane	6.6	0.55	6.27	13.41	3.349	1.33	3.8
Propane	3.1	0.28	3.74	7.5	0.960	0.19	1.7
Butanes	2.0	0.21	1.38	4.02	0.544	0.05	0.8
Pentanes and heavier	3.0	0.25	0.62	2.64	0.630	0.02	0.5

Name	Formula	Volume (%)
Methane	CH ₄	>85
Ethane	C_2H_6	3-8
Propane	C_3H_8	1-2
Butane	C_4H_{10}	<1
Pentane	C_5H_{12}	<1
Carbon dioxide	CO_2	1-2
Hydrogen sulfide	H_2S	<1
Nitrogen	N_2	1-5
Helium	Не	< 0.5

Source: U.S. Bureau of Mines (1972) and Jones et al. (1999).

a Tabular mol% data is on a wet basis (1.3 mol% water)

Gas treating facility design

8

Requirements for gas plant design:

- Raw gas production throughput (plant capacity) [gas reserves]
- Composition of separator inlet (feed) gas & condensates
- Condensate/gas rates
- Residual gas specs
- Rate of gas sales (exports & local demand)
- End-user assurances:
 - Processed gas quality abiding to sales specs
 - Continuous gas supply at agreed rate
- Pipeline transmission efficiency affected by presence of H₂O
- Sales gas specs limits:
 - H/C dew point temp.
 - H₂O vapour content

Sales

Products

Gas treating

9

Wellhead gas is usually saturated with H₂O vapour

- Gas processing (or refining) usually involves several processes to remove:
 - Oil; water vapour (H₂O)
 - Elements of sulphur (H₂S, carbonyl sulphide,...)
 - o Helium (He); carbon dioxide (CO₂)
 - Natural gas liquids; Nitrogen (N₂)
 - Higher hydrocarbons; impurities ie dust, sand
 - Traces of Mercury (Hg) & sometimes
 - Oxygen (O₂)
- Content of dilutents. Some wells contain:
 - o 92% of CO₂ (Col., USA)
 - o 88% of H₂S (Alberta, Ca)
 - 86% of N₂ (Tx, USA)

Selecting a refining process

- Many chemical processes are available for refining natural gas.
- Several variables dictate process sequence & process selection:
 - 1. Types & concentrations of gas contaminants;
 - o 2. Degree of contaminant removal (how pure);
 - o 3. Selectivity of acid gas removal;
 - o 4. Temperature, pressure, volume & composition of the gas;
 - 5. The CO₂/H₂S ratio
 - o 6. Sulphur recovery due to process economics or environmental issues
 - o 7. Mercaptans & carbonyl sulfide in H₂S & CO₂ influence choice of sweetening process

• At wellhead:

- o Scrubbers (desanders) eliminate sand & other large-size impurities (silt, malt)
- Heaters avoid the formation of gas hydrates in presence of H₂O (21 °C (70 °F))

Process sequence

- NGLs could be left in the NG. Usually are removed because they command commercial value
- Sweetening precedes dehydration & NGL separation
- Stage I: gas treatment or gas conditioning removes acid gases
- Stage II: NGL recovery & fractionation
- Gas processing involves some of most expensive & complex processes

Nitrogen & helium

- Nitrogen: 3 methods used to recover nitrogen from natural gas:
 - Cryogenic distillation
 - Adsorption
 - Membrane separation
- Helium:
 - o NG main source of helium
 - Recovery is uncommon
 - Possible if helium content > 0.5 vol%.

Acid gas removal (sweetening)

Gas treatment

Sweetening (1)

- It involves the removal of acid gases: CO_2 , H_2S , sulphur species
- Goals: meet contractual specs and permit further processing
 - o (a) The problems with acid gases?
 - o (b) Levels of acid gas concentrations in natural gas
 - o (c) How much purification is enough?
 - o (d) Acid gases disposal?
 - o (e) What processes eliminate acid gases?

(a) The problems with acid gases?

- H₂S is highly toxic. Combination with air creates a corrosive acid (weak sulfuric acid)
- Sulphur species can also generate carbonyl sulfide (COS)
- Threshold limit value (TLV) for prolonged exposure: 10 ppmv (*rotten egg* smell)
- o [H₂S]>1,000 ppmv death occurs (*odorless*; kills nerve receptors in nose in *secs*)
- o If gas TLV is exceeded, carbon disulphide (CS₂), mercaptans (RSH), sulfides (RSR)
- Presence of CO₂ generates carbonic acid (H₂CO₃)
- O CO₂ is non-flammable. Therefore, undesirable for combustion
- H₂S detected using copper strip test; ppmv determined using stain to.

Sweetening (2)

(b) Levels of acid gas concentrations in natural gas

- Subquality natural gas: CO₂≥2%; N₂≥4%; H₂S≥4ppmv
- Upgrading or blending of sub-quality gas necessary

(c) Gas purification levels

- Inlet conditions of gas processing plant: ambient temp & press. 20 to 70 bar (300 to 1,000 psi)
- 1. Pipeline gas (residential or industrial fuel): $[H_2S] = 6 \text{ mg/m}^3$ (0.25g/100scf) & 3-4 mol%
- 2. NGL recovery or nitrogen rejection in turboexpander CO₂ is removed to avoid formation of solids

Compressor

Gas in

Combressor

Shaft

• 3. LNG quality gas: H₂S≤50 ppmv & CO₂≤50ppmv

Sweetening (3)

(d) Acid gases disposal

- How are acid gases exploited depends on their quality of H₂S & CO₂
- Carbon dioxide:
 - o Frozen CO₂ could clog liquefaction equipment
 - Re-injected in reservoir as part of EOR, if quantities are large
 - Otherwise, CO₂ could be vented provided environmental regulations are met
- Options for H₂S:
 - o 1. Incinerated & vented provided SO₂ regulations are satisfied
 - 2. Combined with H₂S scavengers (iron sponge)
 - o 3. Transformed to elemental sulphur by Claus or other process
 - 4. Underground disposal in geological formations

Low levels

High levels

Sweetening (4)

(e) Purification process

- Distinction btw purification (small) & separation (large volumes)
- Four possible gas removal cases:
 - o (i) CO₂ removal from gas containing no H₂S (sweet gas)
 - o (ii) H₂S removal from gas with no CO₂ (sour gas)
 - o (iii) Concurrent extraction of H₂S & CO₂
 - o (iv) Selective removal of H₂S from gas containing both CO₂ & H₂S

Sulphur recovered from H/Cs

Acid gas removal processes

- H₂S & CO₂ content plus final gas acid levels vary substantially; no single processing process is best
- Two main types of acid gas types processes:
 - o Adsorption.
 - o Absorption.

Adsorption

- Adsorption is a physical-chemical phenomenon. Gas is concentrated on the surface of a solid or liquid to remove impurities.
- Usually, carbon is the adsorbing medium.
- Medium regenerated upon desorption
- Granular solids with a large surface area per unit mass
- Captured gas *desorbed* with hot air or steam for recovery/incineration
- Adsorbers increase low gas concentration prior to incineration

Adsorption vs Absorption

- Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a solid surface.
- During absorption a fluid is dissolved or permeates in a liquid or solid.
- Adsorption is a surface phenomenon vs absorption which involves the bulk (entire) volume of the material.
- Adsorption is generally classified as physisorption (van der Waals forces), chemisorption (covalent bonding), or electrostatic attraction.
- Applications of adsorption comprise:
 - Catalysts
 - Activated charcoal
 - Capturing waste heat (adsorption chillers)
 - Water purification

Adsorption & Absorption

Adsorption (2)

• Adsorbers' limitation. Need to minimize particulate matter &/or condensation of liquids (eg H₂O vapor) which could mask the adsorption surface and drastically reduce its efficiency

Absorption processes

- Absorbed gas passes thru absorbent (liquid)
- Besides physical solubility process may include chemical reactions
- Common absorbing media: H₂O, aqueous amine slts, caustic, sodium carbonate & nonvolatile hydrocarbon oils
- Usually, gas-liquid contactor designs are plate columns or packed beds

Acid gas removal processes

Common processes: Batch type (metal oxide processes); iron & zinc oxide processes; Amine processes (aqueous alkaloamine slts)

Common amine compounds

- H atom in NH₃ replaced by a hydrocarbon group
- Amine dissolved of 10-65%wt dissolved in H₂O

Removal of CO₂ & H₂S by amine slt

- Process of acid gas expulsion accomplished in 2 steps:
 - o 1. Absorption of acid gases (H₂S and CO₂) in amine slt
 - o 2. Weak gases chemically react with amine slt
- Absorption is governed by H₂S partial pressure (Dalton's law)
- Chemical reaction is governed by reactivity of dissolved species
- Amines form salts by combining with acid gases
- Reaction of amine with acid gases is highly exothermic

Amine hydrosulphide

$$R_1R_2R_3N + H_2S \leftrightarrow R_1R_2R_3NH^+HS^-$$

Amine process

- Used on the majority of onshore gas sweetening plants
- Principle solutions (liquids):
 - MonoEthanolAmine (MEA): low P; high outlet gas specs
 - o DiEthanolAmine (DEA): medium to high P; no reclaim
- MEA & DEAs are regenerated by temp & pressure changes (or both)

Issues with amine process

• 1. Corrosion:

- Higher amine concentrations foster corrosion
- Rich amine acid gas loading favours corrosion
- O₂ concentration promote corrosion
- Heat stable salts (HSS) accelerate corrosion & foaming
- 2. Foaming caused by suspended solids, liquid H/Cs, amine degradation, HSS is problematic because:
 - o 1. Reduces process efficiency by lowering gas-liquid interaction
 - o 2. Results in poor solution distribution
 - o 3. Solution holdup results in carryover and poor spec gas

• 3. Heat stable salts (HSSs):

- Involved in corrosion and foaming
- Removed by reclaimer

Recovered H₂S

- 1. Vented
- 2. Flared in waste gas flares or smokeless flaring
- 3. Incinerated into SO₂
- 4. Converted to elemental sulphur or sulphuric acid

Video

Amine system design

• Design process encompasses:

- o 1. Amine absorbers (MEA or DEA)
- o 2. Flash vessel
- o 3. Amine reboiler
- 4. Amine regenerator
- o 5. Rich/lean amine heat exchangers
- o 6. Amine cooler
- 7. Amine solution pumps

Monoethanolamine (MEA)

31

Advantages of MEA:

- Very reactive compound, hence complete acid gas removal
- Used for moderate levels of CO₂ & H₂S

Drawbacks of MEA:

- High vapour pressure results in high vaporization losses
- o Irreversible rxn products with COS & CS₂
- High energy footprint for regeneration
- Cannot selectively remove CO₂ in presence of H₂S
- High corrosion rates compared to other amine slts
- Combination of MEA with O₂ generates corrosive thiosulphates

Diethanolamine (DEA)

(32)

• Pros of DEA:

- O DEA is less basic & reactive compared to MEA
- o Lower vapour pressure, hence lower evaporation losses
- Suited for higher acid gas loadings
- Lower regeneration energy (to MEA)
- Concentration of DEA's limited by corrosion
- o Forms regenerative compounds with COS & H₂S

• Cons of DEA:

- o Not the best choice for high CO₂ levels as it forms corrosive by-products
- O Difficulty of removing the salts, etc.

Amine circulation rate

- Amine *circulation rate* determined from *acid gas flow rate*, sln concentration & acid gas loading
- In SI units:

$$L_{\text{MEA}} = \frac{2.55 \ Q_g \ X_A}{c \ \rho \ A_L}, L_{\text{DEA}} = \frac{4.39 \ Q_g \ X_A}{c \ \rho \ A_L}$$

- L_{MEA}, L_{DEA} the amine slt circulation rate (m³/h)
- Q_g the nat gas flow rate (std m³/h)
- X_A the required reduction in total acid gas fraction (moles acid gas removed/mole inlet gas). NB: MEA & DEA are not selective (X_A = of components (CO_2 , H_2S & mercaptans)
- c amine weight fraction (kg amine/kg solution)
- ρ is the slt mass density (kg/m³)
- A_L is the acid gas loading (mole acid gas/mole amine)

Reboiler duty

- Reboiler provides heat input to amine stripper
- Higher reboiler duty, smaller stripper column
- Typically for a 20 tray stripper reboiler duty:

Reboiler duty (SI units):

$$Q_{reb} = 92,905L_{MEA}, Q_{reb} = 77,421L_{DEA}$$

where: Q_{reb} is the reboiler duty W (btu/h), $L_{MEA, DEA}$ is the amine circulation rate (m³/h)

Typical, reboiler temps: $MEA = 225-260^{\circ}F (107-127^{\circ}C)$

$$DEA = 230-250^{\circ}F (110-121^{\circ}C)$$

Example

• Ex#6: DEA processing system

CO₂ removal – no H₂S

• Selection chart guides most economical choice

Fig 1. CO₂ removal— no H₂S

Amine SG vs composition

Basic design calcs for MEA, DEA & DGA®*

- Procedure used when CO₂ & H₂S are present
- Limitations:
 - o Conservative estimation of amine circulation
 - Equations applicable if CO₂ & H₂S>5 mol%
 - o Max. amine conc. ≈30 wt%
- DEA (conventional) circulation rate:

$$Q_{DEA}$$
 (gpm) = 45 Q_f (y/x)

• Circulation rate for high loading (0.5 mol acid gas pick-up/mole DEA):

$$Q_{DEA}$$
 (gpm) = 32 Q_f (y/x)

where Q_f is sour gas feed (MMscfd), y is acid gas conc in sour gas (mol%), x is DEA conc. in liquid slt (mass% or wt%)

*DGA®=DiGlycolAmine

Heat exchange & pump power requirements

	Duty		Area	
	Btu/hr	kW	Sq. ft.	m ²
Reboiler (Direc fired)	72,000 • GPM	93 • m³/h	11.30 ● GPM	4.63 • r
Rich-Lean Amine HEX	45,000 ● GPM	85 • m³/h	11.25 ● GPM	4.60 • r
Amine cooler (air cooled)	15,000 ● GPM	19.3 • m³/h	10.20 ◆ GPM	4.18 • n
Reflux condenser	30,000 ● GPM	38.6 • m³/h	5.20 ◆ GPM	2.13 • ⊓

Main Amine Solution Pumps	GPM ● PSIG ● 0.00065 = hp	m ³ /h • kPa (ga) • 0.00031 = kW
Amine Booster Pumps	GPM • 0.06 = hp	$m^3/h \bullet 0.20 = kW$
Reflux Pumps	GPM ◆ 0.06 = hp	$m^3/h \cdot 0.20 = kW$
Aerial Cooler	GPM • 0.36 = hp	$m^3/h \cdot 1.20 = kW$

Amine plant contactor (absorber) diameter

40

Absorber diameter (in inches):

$$D_A = 44 \left(\frac{Q_{in}}{\sqrt{P}}\right)^{0.5}$$

 D_A rounding to nearest ± 6 in (24"-294"), Q_{in} is gas inlet flow rate to absorber (MMscfd), P is the absorber pressure (psia)

• Regenerator bottom diameter (in inches):

$$D_r = 3.0\sqrt{Q_{DEA}} (gpm)$$

where Q_{DEA} is the amine circulation rate (gpm)

• Diameter of regenerator column above feed point, $D_{r,t} = 0.67D_r$

Acid gas treatment calcs.

41

• Example #7

Aspen HYSYS acid gas treatment with DEA (unsteady)

Future LNG market determinants

- Current (2017) global LNG market: \$90bn
- 2018-2020: 1/5 LNG contracts said to expire
- 2017-2027: contracts amounting to 80% of LNG to be rewritten
- Qatar to expand production by 30% in foreseeable future
- Iran will not probably enter the LNG sector

Gas dehydration

- First: determine water content of gas stream
- Obtained from:
 McKetta & Wehe (1958)
 pressure–temperature correlation

Gas dehydration

- Natural gas (associated, dry, or tail) contains H₂O in either liquid &/or gaseous form
- Water vapour is the most common "contaminant" of hydrocarbons
- Operating experience & engineering reasons require control of H₂O
- Dehydration is a pre-requisite for sales gas & NGL recovery
- Dehydration's important because:
 - o 1. Gas hydrates. NG could combine with H₂O to form gas hydrates which can occlude pipeline fluid flow.
 - **2. Corrosion.** H₂O condensation in pipeline can promote slug flow leading to erosion & corrosion. Carbon steel prone to corrosion.
 - o 3. Calorific value. H₂O increases the volume of natural gas & lowers its energy content.
 - 4. Gas specs. Sales contracts or pipeline contracts dictate max H₂O content of NG: 7 lb (H₂O)/MMscf (3.2 kg(H₂O)/28,316 m³).
 - o **5. Downstream processing.** H₂O presence may cause side reactions, foaming or catalyst deactivation

Gas dehydration (2)

- If natural gas contains water vapour, it will reduce the efficiency & capacity of pipeline
- Dehydration helps meet gas sales contracts:
 - o Southern USA, Southeast Asia, southern Europe, W. Africa, Australia 7 lb/MMScfd
 - o Northern USA, Canada, northern Europe, northern & central Asia 2–4 lb/MMScfd
 - o Cryogenic (turbo expander plants) 0.05 lb/MMscfd
 - Solid bed adsorption units are used where very low dew points are required.

Gas dehydration

- H₂O vapor dew point is the temperature & pressure at which the first drop of water vapor condenses into a liquid
- It is used as a means of measuring the H₂O vapor content of natural gas
- Why do H₂O droplets form on the outside surface of a cold H₂O glass?
- As water vapor is removed from gas stream, the dew point decreases
- Keeping the gas stream above the dew point will prevent hydrates from forming and prevent corrosion from occurring.

Water vapor of natural gas

Determine gas water content at dew point

• Example #8 (see next page)

Water content of sweet, lean natural gas

Solution (#1)

• (i) Point A: 1,000psia @ 90°F = $42 \text{ lb}(H_20)/\text{MMscf}$ Point B: 1000psia @ 35°F = $5.8 \text{ lb}(H_20)/\text{MMscf}$ Therefore, $\Delta H_2O \text{ content} = 42 - 5.8 \approx 36.2 \text{ lb}/\text{MMscf}$

• (ii) Point C: 1000 \rightarrow 300psia @ 5.8lb/MMscf Water dew point \approx 7°F (\approx -14°C)

Dehydration methods

Most common dehydration methods:

- 1. Absorption, using the liquid desiccants (e.g., glycols, methanol, ...)
- o 2. Adsorption, using solid desiccants (e.g., alumina, silica gel, ...)
- o 3. Cooling/condensation below the dew point, by expansion and/or refrigeration

1. Absorption: Glycol dehydration process

52

- Principles:
- 1. "Wet" gas comes into contact with a hygroscopic solvent (triethylene glycol) which extracts the water
- 2. Absorption, defined as the transfer of H₂O from the gas into the liquid phase, is favourable at lower temp & higher pressure

• 3. Absorption process is *dynamic* & *continuous*. Therefore, water absorption occurs in a *counterflow* configuration of the feed gas &

glycol

Working press.: 1,000-1,200psi

Gas temp.: 80-110°F

Glycol regen. temp: 370-190°F

2. Adsorption

- Solid desiccants more effective than liquid ones. Attain < 0.1 ppmv
- Often used in conjunction with glycol dehydrator
- Removal of water vapour by *solid desiccant* (*alumina, silica gel*, *molecular sieves*)
- When *low dew points* are needed, *solid-bed dehydration* is the choice
- Principle of fixed-bed adsorption of water by solid

Solid desiccants properties

Desiccant reference	Silica gel	Activated alumina	Molecular sieves
Pore diameter (Å)	10–90	15	3, 4, 5, 10
Bulk density (lb/ft ³)	45	44-48	43-47
Heat capacity (Btu/lb°F)	0.22	0.24	0.23
Minimum dew point (°F)	-60 to -90	-60 to -90	-100 to -300
Design capacity (wt%)	4-20	11-15	8-16
Regeneration stream temp. (°F)	300-500	350-500	425-550
Heat of adsorption (Btu/lb)	_	_	1800

Important parameter: design capacity [H₂O mass/mass of desiccant]

2. Adsorption (2)

- Adsorption performance governed by:
 - Relative humidity of inlet gas
 - Gas flow rate
 - Temp. of the adsorption zone
 - Granule mesh size
 - Degree of contamination of desiccant
- Bed first loaded with water; regenerated by hot gas; cooled by cold gas

Natural gas liquids & fractionation

- Recall: natural gas liquids (NGL) consist of $C_{2+}:C_2H_6,C_3H_8,C_4H_{10},C_5H_{12}$
- Gas condensates:
 - H₂S, CO₂, straight-chain alkanes, cyclohexane, napthenes
 - o Thiols (mercaptans), aromatics (benzene, toluene)
- Separation & recovery of NGLs from gas stream based on phase change
 - (i) Energy separating agent (ESA)
 - (ii) Mass separating agent (MSA)
- NGLs can be recovered by:
 - o (i) Partial liquefaction or partial condensation or
 - o (ii) Total condensation
- Types of fractionators with recommended gas streams & products will also be explained

Energy separating agent & Mass separating agent

Energy separating agent (ESA)

- Change in phase recovers NGLs from bulk gas stream
- Expel heat by refrigeration allows heavier H/C components to condense (liquefy):

A mixture of hydrocarbon vapor – Heat → Liquid + Vapor

 Partial liquefaction is possible whereas total liquefaction covers entire gas stream

Mass separating agent (MSA)

• A new phase is developed either using adsorption (solid material in contact with gas) or absorption (liquid in contact with gas)

Mass separating agent

- A *phase change* in NGL recovery & separation always involves control of one or more of the following parameters:
 - Operating pressure, *P*
 - Operating temperature, *T*
 - System composition or concentration
- To obtain the desired quantities of particular NGL constituents we control:
 - 1. Pressure is maintained by direct control. Temperature is lowered by refrigeration:
 - (a) Compression refrigeration
 - (b) Cryogenic separation (expansion across a turbine)
 - (c) Cryogenic separation (expansion across a valve)
 - o 2. Control of the composition or concentration of the hydrocarbons to be recovered

Adsorption (MSA)

- Simply put adsorption is defined as a concentration control method prior to condensation
- Solid materials offers "new surface" area which traps H/Cs components to be recovered & separated
- Once constituents are attached on solid are then "regenerated" in a high concentration
- About 10-15% of gas feed is recovered as liquids (NGLs)
- Adsorption usually coupled with refrigeration methods

Absorption (MSA)

- Absorption provides a surface or "contact" area of liquid-gas interface
- Again process efficiency is a function of:
 - o Pressure, P
 - o Temperature, T
 - Gas flow rates
 - Contact time
- Likewise, to enhance condensation absorption could be combined with refrigeration

Absorption (2)

- Natural gas stream brought in contact with light oil in absorber
- Rich oil (NGL + solvent) directed to a distillation unit to be separated

Oil recycled in absorber

Refrigeration process

- Production of NGL at low temperatures is a common extraction process
- Operating pressure for max. liquid recovery: 400 to 600 psia
- Refrigeration operating temp selected on the type of product:
 - o If liquid product contains ethane as lightest component then temp −30°C to −18°C
 - o If operating temp. >−30°C, cryogenic range of ethane recovery is preferred

Cryogenic processes

- Natural gas could be separated from natural gas stream by cryogenic expansion (autorefrigeration) processes:
 - o 1. NG liquid H/Cs condensed & recovered using a turboexpander
 - o 2. Expansion through a valve yields similar results
- Turboexpansion generates lower temps than valve expansion

Turboexpansion

63

• Operating temp. range: -73°C to -107°C & 68 atm

Fractionation of NGL

- Process of separating stream of NGLs into components called fractionation
- Safety issues govern the min extraction level of NGLs
- Max. extraction defined by technology & relative market value of NGLs
- NGLs are fractionated by heating mixed NGL streams & subjecting them through a series of distillation towers
- Fractionation based on different boiling points of NGL products

Fractionation

- Lightest fraction boils at top of tower while heaviest rerouted to another tower
- Fractionation plants aim to:
 - 1. Produce products with certain specs
 - o 2. Control impurities in valuable products
 - o 3. Control fuel consumption

Liquid Petroleum Gas (LPG)

- LPG is a hydrocarbon mixture of propane & n-butane. The most common commercial products are propane, butane, or some mixture of the two and are generally extracted from natural gas or crude petroleum.
- Note that LPG is not Liquefied Natural Gas (LNG)

NG, LNG, LPG, NGL, CNG

- Natural gas (NG): natural gas: C_nH_{2n+2} , H_2S , CO_2 , He, N_2 , H_2O , ...,
- LNG: liquefied natural gas: CH₄, C₂H₆, C₃H₈, N₂, ...
- NGL: natural gas liquids: C_2H_6 , C_3H_8 , C_4H_{10} , iso- C_4H_{10} , C_5H_{12}
- LPG: liquefied petroleum gas: C₃H₈ & C₄H₁₀
- CNG: compressed natural gas: CH₄

Typical LNG Compositions

Component	Composition Range (mol%)
Nitrogen	0.00 - 1.00
Methane	84.55 - 96.38
Ethane	2.00 - 11.41
Propane	0.35 - 3.21
Isobutane	0.00 - 0.70
n-Butane	0.00 - 1.30
Isopentane	0.00 - 0.02
n-Pentane	0.00 - 0.04
HHV gas	1021 - 1157
Btu/scf (kJ/Sm3)	(38,000 - 43,090)
Wobbe number	1353 - 1432
GPM, on C ₂ + basis	0.71 - 4.08
$(m^3/1,000m^3)$	(0.094 - 0.543)

Source: McCartney (2003).

Natural gas classification

- "Rich" gas contains ≥ 3 GPM (gallons of liquids recoverable/Mscf) of C_2 + liquids
- "Lean" gas contains <1 GPM of C₂+ liquids
- "Sweet" gas contains <4 ppmv of H_2S (p/line-quality gas 0.25-1.0 grains/100scf; 4-16 ppmv) 1 grain = 64.8mg
- "Sour" gas contains an appreciable quantity of CO₂, H₂S, sulfide, or mercaptans
- "Wet" gas contains water, or a gas that has not been dehydrated; term synonymous with rich gas.
- "Dry" gas that consists mostly of CH_4 , producing little condensable heavier hydrocarbon compounds such as $C_3H_8 \& C_4H_{10}$. (<0.1 GPM)

LPG facilitated diving (not recommended)

Thanks for your attention!