Natural Gas Liquefaction

Constantinos Hadjistassou, PhD

Associate professor

Programme in Oil & Gas Engineering

University of Nicosia

Marine & Carbon Lab: www.carbonlab.eu

Nov./Dec., 2020

Overview

- Natural gas use & energy content
- Natural gas transportation
- Joule-Thomson (J-T) expansion
- Expander cycle
- Cascade cycles

Incentives of natural gas use

- 3
- Environmental reasons (global warming) renewed interest in NG
- Greener fuel compared to coal & oil (Mitigate pollution (esp. urban))
- Lower cost H/C compared to oil (eg Russia)
- Relatively safe fuel (can power dual fuel vehicles)
- NG abundance is a major driver (hydraulic fracking)
- Can displace national oil use in oil producing countries
- Most versatile H/C: petrochemical feedstock, ammonia, domestic & industrial uses, heating

What is a trillion cubic feet (tcf) of NG?

4

• How much energy does 1 trillion cubic feet (tcf) of NG contain?

Trillion cubit feet (tcf) of NG are used as a measure of the volume of gaseous fossil fuel reserves found in the ground (inland or offshore), or the annual natural gas (energy) consumption.

- 1 TCF is sufficient to:
- Heat some 15 million homes for 1 year, or
- Generate 100 billion kilowatt-hours (kWh) of electricity, or
- Power 12 million natural gas fired vehicles for one year, or

- Peak Cypriot natural gas demand: 600 MW (03/12/19)
- Available capacity: 1,178 MW (03/12/19), PVs: 104 MW

Energy density and LNG

- For the same volume (@ ambient conds) gasoline contains ≈ 1,000× energy of gaseous NG
- Coal (anthracite; 31MJ/kg) contains 700x the NG energy
- LNG energy density: 2.4× CNG, 60% of diesel, 70% of gasoline
- What are the 2 energy density challenges for NG?
 - Use high pressure pipeline networks or storage tanks (CNG vehicles)
 - o Difficult to accumulate large quantities of energy [gas] in storage facilities
- Sourcing the gas to customers involves:
 - o 1. Extraction & Processing: Field extraction, gathering, transmission & processing
 - **2. LNG production:** NG treating, NGL & condensate removal, liquefaction, storage & loading
 - o 3. Shipping LNG (transportation)
 - 4. Delivery & distribution: LNG receiving terminal, storage, regasification & distribution

Characteristics of LNG

- LNG is clear, odourless, colourless, non-toxic, non-corrosive
- ρ_{LNG} = 430–470kg/m³. Does LNG float in water?
- LNG is economic for distances >~1,100km by sea or ~3,500km by land
- Offshore stranded gas is economic for LNG if d>1,100km from market

Gas flow characteristics

8

- Gas gathering pipelines (<30", 76cm) & 'trunklines' (>30")
- Gas streams to consumers carry single phase compressible NG mixture
- Onshore pipelines typically operate at: 700-1,100psi (~4,000 psi)
- Offshore pipelines typically operate at: 1,400-2,100psi
- Gas coolers installed at the discharge side of gas compressors. Why?
 - Regulate inlet gas temp. so as to avoid hydrate undue downstream pressure losses
 - Protect pipeline inner & external coatings against high temps

Natural gas transportation

 Processed (or refined) NG source to markets by pipeline(s), as LNG or CNG

Pipelines natural choice (inexpensive)

Submarine pipelines: 10x inland p/lines

- LNG is technology proven & safe
- For LNG receiving & export terminal as well as LNG ships are expensive
- LNG carriers account for about 30% of LNG export costs
- Liquefaction & transport energy expenditure: 25% of gas!
- Marine compressed natural gas (CNG) is another transport mode (future one)

World natural gas trade movements (2012)

10

• Trade movement of NG (2012):

- o Total NG exports: 1,033 bcm
- O By pipelines: 705 bcm (imports, 68%)
- o LNG: 327 bcm (exports, 32%)

Largest LNG import countries:

o Japan: ≈119 bcm

o South Korea: 50 bcm

o Spain: 21.4 bcm

o China: 20.5 bcm

o India: 20 bcm

Major LNG export nations:

O Qatar: 105.4 bcm

o Malaysia: 31.8 bcm

o Australia: 28.1 bcm

o Nigeria: 27.2 bcm

o Indonesia: 25 bcm

Major natural gas producers & consumers (2017)

Marine compressed natural gas (CNG)

- Marine CNG competitive for small volumes (1-2 bcm/y) over short distances (<2,000 km)
- Volume ratios: CNG (200:1); LNG (600:1)
- CNG requires no liquefaction plant or regas terminal. Pressurized gas
- CNG carriers constitute major cost investment

LNG economics

- Note: transportation >> wellhead costs > liquefaction > regas
- An LNG ship may cost \$220m (end 2012; 160,000m³)
- Need to build the LNG vessels
- The longer the distance from loading to discharge higher the costs
- Cyprus wellhead costs much higher...

Cost Breakdown in \$/MM Btu for LNG Plants					
Project	Wellhead Gas	Liquefaction	Transportation	Regasification	Minimum CIF Cost ^a
Qatar	0.50-0.75	0.40-0.60	1.10-1.20	0.40-0.60	2.45
North West Shelf (Australia)	0.65-0.95	0.40-0.60	0.75-0.95	0.35-0.55	2.15
Bontang, Indonesia	0.60-0.80	0.45-0.65	0.55-0.75	0.30-0.60	1.90

a CIF = Carriage + insurance + freight (i.e., cost delivered to customer).

Source: Troner (2001).

Cost of LNG plants

- Btw 1959 & 1970s design improvements in LNG plants & LNG carriers led to reduced LNG plant costs
- In 1980s, the cost of construction of an LNG facility cost \$350/tpa
- In 2000s, it cost \$200/tpa (of LNG)
- In 2012, because of an increase in the price of steel costs soared to \$1,000/tpa
- The construction cost of greenfield LNG projects started to escalate >2004 from \$400/tpa to \$1,000/tpa as of 2008
- The main reasons are:
 - Low availability of EPC contractors as result of extraordinary demand for ongoing petro projects
 - o High cost raw material as result of surge in demand
 - Lack of skilled labor in LNG industry
 - o Devaluation of US dollar

Natural gas liquefaction

- Volume reduction of NG: 600-630:1
- Energy dense liquid NG is attractive for Field Acid Gas Removal
 - o Storage, &
 - Transportation
- Proved technology
- LNG storage at:
 - Liquefaction facilities
 - Peak shaving installations
- For an LNG plant to become viable
 3 tcf suffice
- Newer LNG plant designs put this to as low as 1 tcf

LNG production plant

The LNG value chain

- Upstream: NG production, transmission & liquefaction
- Midstream: LNG sales
- Downstream: LNG regasification, LNG storage & transportation
- ≈10% of the NG received by a liquefaction plant is used to liquefy gas

Baseload plant

Gas treating prior to liquefaction

- NG destined for liquefaction must be 'purer' than sales gas
- NG for LNG must contain less H₂O, N₂, CO₂. Why?
 - Solid depositions plug heat exchangers
- Combination of elemental mercury destroys heat exchangers

compositional specifications on recu to Eve Hair and on ripening		
Impurity	Feed to LNG Plant ^a	Pipeline Gas ^b
Water	$< 0.1 \text{ ppmv}^{c}$	150 ppmv, (7.0 lb/MMscf,
Hydrogen sulfide	< 4 ppmv	110 kg/Sm ³) 0.25 – 0.30 gr/100 scf

Compositional Specifications on Feed to LNG Plant and on Pineline Gas.

	11	11
		110 kg/Sm ³)
Hydrogen sulfide	< 4 ppmv	0.25 - 0.30 gr/100 scf
		$(5.7 - 22.9 \text{ mg/Sm}^3)$
Carbon dioxide	< 50 ppmv	3 to 4 mole%
Total sulfur	< 20 ppmv	5 - 20 gr/100 scf
(H ₂ S, COS, organic sulfur)		$(115 - 459 \text{ mg/Sm}^3)$
Nitrogen	<1 mol%	3 mol%
Mercury	$< 0.01 \ \mu g/Nm3$	
Butanes	2 mol% max	
Pentanes+	0.1 mol% max	
Aromatics	< 2 ppmv ^c	

^a Foglietta (2002).

^b Engineering Data Book (2005a).

^c McCartney (2005).

LNG composition [17 samples]

• Produced LNG (not feed gas)

Typical LNG Compositions			
Component	Composition Range (mol%)		
Nitrogen	0.00 - 1.00		
Methane	84.55 – 96.38		
Ethane	2.00 - 11.41		
Propane	0.35 - 3.21		
Isobutane	0.00 - 0.70		
n-Butane	0.00 - 1.30		
Isopentane	0.00 - 0.02		
n-Pentane	0.00 - 0.04		
HHV gas	1021 – 1157		
Btu/scf (kJ/Sm3)	(38,000 - 43,090)		
Wobbe number	1353 - 1432		
GPM, on C ₂ + basis	0.71 - 4.08		
$(m^3/1,000m^3)$	(0.094 - 0.543)		
Source: McCartney (2003).			

HHV: higher heating value GPM: liquids recoverable

Natural gas liquefaction

- Gas liquefaction occurs when gases are cooled below their critical temp.
- Cryogenics is the science of attaining very low temperatures (>-150°C,
 -123 K) & the study of the behavior of materials at those temperatures.
- Cryogenics is not (≠) cryonics (cryopreservation @ −196°C, liquid N₂)
- Liquefaction cycles:
 - Joule-Thomson expansion
 - Expansion in an engine doing external work

Keeping the Covid-19 vaccine cool

- Pfizer-BioNTech mRNA vaccine needs to maintained at -70°C
- Conventional refrigeration reaches -25°C
- Hospitals do not have the facilities to maintain the vaccine
- Logistics are an issue
- Neither do the companies have the means to deliver the medicine
- German 'thermoboxes' made of vacuum insulation panels (10× better)

1. Joule-Thomson LNG cycles

- Discovered in 1852 by James Joule & Lord Kelvin
- Idea: convert pressure into temp. drop
- Joule-Thomson effect is the temperature drop of a *gas* or *liquid* when allowed to expand through a valve
- Insulation minimises heat losses
- Adiabatic expansion through a valve, no external work is done
- Internal energy manifests as pressure drop

Joule-Thomson

24

• Theory#3

Joule-Thomson effect

- Also known as *throttling* it is an inherently *irreversible* process
- Slope of an *isenthalphic* curve is the Joule-Thomson coefficient:

$$\mu = \left(\frac{\partial T}{\partial P}\right)_h$$
.

- If $\mu>0$ (ie, +ve), gas *cools* upon expansion
- If μ =0, gas temp does *not change*
- If μ <0 (ie, -ve), gas warms up with expansion
- Loci of maxima of isenthalpic curves (μ =0) known as inversion curve

	Initial Temperature	Final Temperature	t _{fina} ⊢t _{initial}
	°F (°C)	°F (°C)	°F (°C)
Methane	80 (27)	-4 (-20)	-44 (-47)
Nitrogen	80 (27)	46 (8)	-34 (-19)
Helium	80 (27)	91 (33)	11 (6)
Methane	-10 (-23)	-125 (-87)	-115 (-64)
Nitrogen	-10 (-23)	-60 (-51)	-50 (-28)
Helium	-10 (-23)	1 (-17)	11 (6)
Methane	-46 (-43)	-215 (-137)	-169 (-94)
Nitrogen	-46 (-43)	-107 (-77)	-61 (-34)
Helium	-46 (-43)	-35 (-37)	11 (6)

Expansion from 1470 psia (101 bar) to 14.5 psia (1 bar)

Joule-Thomson expansion

- Components of an NG J-T (Joule-Thomson):
 - Compressor
 - Air cooled heat exchanger
 - Counter-flow (NG-NG) heat exchanger
 - o J-T valve
 - Liquid-gas separator
- Initially NG compressed, cooled & allowed to expand thru J-T valve
- Initial pressure drop to T=47°C
- Process is repeated until liquefaction temp. is reached
- Critical: make-up gas closely controlled

Joule-Thomson expansion (2)

• 1st Law of Thermodynamics:

"Energy is conserved & heat and work are both forms of energy."

• In differential form the 1st Law of Thermo:

$$dQ = dW + dU \tag{1}$$

where: U = internal energy, W = work, Q = thermal energy

• Application of eqn (1) to thermodynamic boundary yields:

$$\Delta h = q_L \tag{2}$$

where change in *enthalpy* (Δh) equals the *heat leak* (q_I) on mass basis.

Throttling devices

(28)

• Theory #2

Joule-Thomson expansion (3)

• Applying the principle of mass conservation & taking h into account (Fig 1.) eqn (2) yields:

$$q_L = f h_2 + (1 - f) h_3 - h_1$$
 (3)

where $f = \frac{\dot{m_1}}{\dot{m_2}}$ is the mass fraction

• Re-arranging eq (3):

$$f = \frac{h_3 - h_1 - q_L}{h_3 - h_2} \tag{4}$$

• How can we increase *f*?

Problem #9

Temperature(°C)	Pressure (bar)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)
25	40	870.93	4.673
-75	4	688.76	5.065
-100	4	634.39	4.772
-150	4	40.90	0.342

Fig.2: J-T process

J-T efficiency & application

- Use double stage expansion
- Add external source of refrigeration
- Only double stage valve found beneficial for LNG production
- Low capital costs & simplicity make J-T plants ideal for small NG volumes
- However, the higher thermodynamic efficiency of *cascade* & *expander* cycles render J-T unpopular

Small J-T LNG plant

32)

- Simplicity and low costs make this LNG plant attractive
- Suitable for small volumes
- LNG transported via LNG trucks

2. Expander cycles

- Remember: J-T expander cycle is thermodynamically irreversible
- Reversible or nearly reversible gas expansion offers 2 advantages vs JT:
 - A large amount of compression work can be recovered \rightarrow higher η
 - Reversible process attains larger cooling effect
- Reversible, adiabatic expander cycle temp drop for CH₄: (75psia, 80°F) to -94°F
- J-T: $\Delta T = 4$ ° F
- Expanders are compressors with their flow reversed
- Work performed by an expander needs to be removed. Thus couple:
 - o Turboexpander → centrifugal compressor
 - Reciprocating expanders → reciprocating compressors (rarely used)
- Expander cycles:
 - o (a). Closed cycles
 - o (b). Open cycles

(a). Closed LNG cycles

- Working fluid is not natural gas, could be N₂
- N₂ expansion cools NG
- N₂ & NG do not directly mix
- Nitrogen is a safe gas, ensures few steps
- Cycle requires fewer & less expensive shutdown procedures vs open cycle
- Relatively complex machine

Treated natural

(b). Open LNG cycles

- Simpler than a closed cycle
- NG is the expanding medium
- Application of the 1st law of thermo in the thermodynamic boundary:

$$f = \frac{h_3 - h_1 - q_L}{h_3 - h_2} + \frac{e(h_4 - h_6)}{h_3 - h_2} , \qquad (5)$$

where e = fraction of NG entering the turboexpander; (h_4-h_6) : work done by the expander; \dot{m} , \dot{m}_f , \dot{m}_e : mass flow rates into liquefier, of liquefied product, & into turboexpander

Several variations of open LNG cycles

Open cycle type peak shaving plant

Thanks for your attention!