Natural gas liquefaction cycles

Constantinos Hadjistassou, PhD

Associate professor

Programme in Oil & Gas Engineering

University of Nicosia

Marine & Carbon Lab: www.carbonlab.eu

Nov./Dec., 2020

Overview

- Liquefaction cycles:
 - o 1) Joule-Thomson cycles
 - o 2) Expander cycles
 - o 3) Cascade cycles for NG liquefaction
- Vapor-compression refrigeration cycle
- Classical cascade cycle
- Mixed refrigerant cascade (MRC) cycles
- Thermodynamic calculations of LNG processes
- Choosing among liquefaction cycles

LNG plant flow diagram

- 3
- Delivered gas stream at about 1,300 psi
- NG is metered before pre-treatment
- Cryogenic cooling (<-150°C) usually accomplished in several steps
- Flash vapours either recycled or used as a fuel
- Most LNG contracts specify a range of acceptable heating values

What is an LNG train?

- 4
- "Trains" treat & liquefy natural gas and store it in LNG tanks
- Train size governed by: liquefaction process, refrigerant(s), size of compressor/driver combo, size of heat exchangers

Recap: Joule-Thomson & Expander cycles

5

Joule-Thomson cycle

Methane make-up Air-cooled heat exchanger Compressor Thermodynamic boundary Heat exchanger J-T Liquid receiver → LNG product

Recall advantage of (nearly) reversible (ideal) gas expansion over J-T:

- A large part of compression work can be recovered thru heat exchanger \rightarrow higher η
- Reversible process attains larger cooling effect

Some definitions

- Thermodynamic cycles consist of *power cycles* & *refrigeration cycles*
- *Refrigeration* is the transfer of heat from a lower temperature to a higher temperature reservoir, facilitated by mechanical work.
- What is a refrigerant?
 It is the working fluid used in a refrigeration cycle eg, R410a, R32, CH₄.
- Sensible heat is the amount of heat required to raise the temp. of a unit mass of a substance by 1K, $(Q = mc_p \Delta T; c_{p, H2O} = 4,181 \text{ J/kg·K} @ 20^{\circ}\text{C})$
- Latent heat is the thermal energy *released* or *absorbed* by a body during a phase change at constant temperature eg melting of ice or boiling H_2O . $L_{vaporis.} = 2,260 \text{ kJ}\cdot\text{kg}^{-1} \mid L_{fusion} = 334 \text{ kJ}\cdot\text{kg}^{-1}$

Some definitions

8

• Entropy (*s*) is the notion tied to the 2nd Law of Thermodynamics. It is defined as the "degree of disorder of a thermodynamic system" or "specific ways in which a thermo system can be rearranged." Stm at equilibrium has max. S. S units: J/K

$$\Delta s = \int \frac{dQ_{Rev}}{T}$$

• Enthalpy (h) is the thermodynamic potential of a system:

$$h = u + pv$$

where u is the internal energy, p is pressure & v is volume. h units: J

Carnot refrigeration cycle

- Profound societal & economic impacts:
 - Changed the way we process food
 - Expanded agricultural markets & human diet
 - Air-conditioning improves thermal comfort, productivity, standard of living
- Closed loop cycle whose working medium is vapour & liquid
- Processes are internally reversible
- Latent heat absorbs & rejects heat btw colder & hotter environments
- 1→2: isentropic compression
- 2→3: isothermal condensation
- 3→4: isentropic expansion through turbine
- 4→1: isothermal evaporation

Refrigeration

Vapour compression refrigeration

- Change in phase (or mix %) facilitates heat absorption & rejection
- In an actual vapour-compression refrigeration cycle turbine replaced by expansion valve
- In reality, irreversibilities lower performance.
- Mismatch btw cold & hot regions and refrigerant

Actual vapour-compression cycle

Distinction btw refrigerators & heat pumps

12

- A refrigerator and a heat pump transfer heat from a low-temp. reservoir to a higher temp. region
- They are the same devices but differ in their use
- A refrigerator cools a cold space
- A heat pump warms a space (house)
- Both require mechanical work
- Heat pump works on principle of operation of

modern air-conditioning systems

How do refrigerators work

• 1. Vapour. Starting the cooling cycle, the refrigerant is in gaseous state

• 2. Compressor. A compressor then pressurises the vapour, warming it up

- 3. Condenser. Once hot & highly pressurised, the vapour is channelled outside the fridge into a condenser, where it is cooled into a high pressure liquid
- 4. Expansion valve. In liquid form the refrigerant is drawn in an expansion valve & back into the low-pressure fridge compartment
- 5. Compartment. As the refrigerant vaporises it cools the main compartment of the fridge before being directed into the compressor to begin the cycle all over.

Cascade cycles

- Maximum thermodynamic efficiency of liquefaction cycle attained if: "the heating curve of refrigerant matches the cooling curve of NG"
- Working media: 2 fluids (NG & mixed refrigerant)

Thermodynamically, the mixed refrigerant emulates a reversible

process because it minimizes $\Delta T (\Delta h)$

Smaller ΔT less power per kg LNG

In practice how do u mimic the cooling curve?

- Increase heat transfer efficiency by minimizing ΔT btw refrigerant & NG
- Use a series of refrigerants (usually 3) is a process known as a cascade cycle
- >3 refrigerants can be used but with added costs & complexity

Cascade cycles

- 1. Classical cascade cycle
- 2. Mixed-refrigerant cascade cycle
 - Closed cycle
 - Open cycle

Natural gas liquefaction cycles

Liquefaction cycles:

- o 1. Classical cascade
 - Refrigerants: a) propane, b) ethylene, c) methane in compr.-refrig. cycles
- 2. Modified cascades:
 - Mixed refrigerant
 - Fewer compressors & heat exchangers
 - Less space
 - Less costly to build
 - Costs less to operate
 - Precooled mixed refrigerant
 - Most popular cycle
 - Uses mixed refrigerants: N_a, CH_a
 - Known as C3MR cycle

1. Classical cascade

- Fig. 1 illustrates a two working fluids cascade cycle
- Working fluid compressed (1) and then cooled in heat exchanger E-1
- Liquid from R-1 enters E-2 where it is cooled & expands thru J-T valve
- Vapour directed thru E-1
- Liquid from R-2 cools E-4 gas
- Temp: R-1>R-2>R-3>R-4>R-5>R-6
- Feed gas progressively cools until it is expanded through a J-T valve & separated from its vapour

Classical cascade (2)

• NG liquefaction uses 3 refrigerants with 2 or 3 refrigeration stages

• Refrigerants are *pure* fluids (m-e-p):

- 1) propane,
- 2) ethylene (or ethane)
- 3) methane
- Heat exchangers are cooled by refrigeration cycles
- For fluids to *match* part of their vapour pressures must overlap
- Vapour (or equilibrium) pressure
- Note: use of 3 compressors is not favourable

2. Mixed refrigerant cascade

- Principle of mixed-refrigerant cascade (MRC), auto-refrigerated cascade (ARC) & one flow cascade (OFC)
- Aims to mimic the NG cooling curve by using 1 refrigeration loop
- Refrigerant: single fluid whose components liquefy @ varying temps
- Attains closer match btw NG cooling & refrigerant heating
- Only one compressor is needed

2. Mixed refrigerant cascade: closed cycle

- Refrigeration mixture = f(NG composition)
- Refrigerant mix may consist of N₂,
 CH₄, C₂H₆, C₃H₈, C₄H₁₀, & C₅H₁₀
- Working fluid subject to pressure drops & liquid-vapor separations
- Temp of NG gradually reduced to -161°C
- Refrigerant & NG do not mix

Press.bar	1.0	3.4	6.85	17.1	34.2
Methane	-159	-144	-133	-92+15.8	-71
Ethane	-91	-63	-44		
Propane	-46	-12	+12	-	
Ethylene	-104	-80	-62	-8.3	
Propylene	-49	-18	-5.6	-	
Nitrogen	-	-183	-174	-148	-133

Propane pre-cooled mixed refrigerant (C3MR)

- 21
- Most common mixed refrigerant stm for baseload NG plants
- Employs external propane refrigeration
 & mixed fluid J-T expansion
- Fluid #1: propane, #2: mixed refrigerant, #3: treated NG
- Uses two compressors

Compositional Specifications on Feed to LNG Plant and on Pipeline Gas					
Impurity	Feed to LNG Plant ^a	Pipeline Gas ^b			
Water	< 0.1 ppmv ^c	150 ppmv, (7.0 lb/MMscf, 110 kg/Sm ³)			
Hydrogen sulfide	< 4 ppmv	0.25 – 0.30 gr/100 scf (5.7 – 22.9 mg/Sm ³)			
Carbon dioxide	< 50 ppmv	3 to 4 mole%			
Total sulfur	< 20 ppmv	5 - 20 gr/100 scf			
(H ₂ S, COS, organic sulfur)		$(115 - 459 \text{ mg/Sm}^3)$			
Nitrogen	<1 mol%	3 mol%			
Mercury	< 0.01 µg/Nm3				
Butanes	2 mol% max				
Pentanes+	0.1 mol% max				
Aromatics	< 2 ppmv ^c				
^a Foglietta (2002).					
b Engineering Data Book (2005a)					
^c McCartney (2005).					

2. Mixed refrigerant cascade: open cycle

- NG stream mixed with refrigeration mix
- Mixing can be done: *before*, *during* or *after* compression
- Final separator divides NG into LNG & flash gas
- Flash gas used to power LNG plant
- Use of a single compressor is advantageous

Mixed refrigerant cascades

- Pros of MRC:
- Use 1 compressor means:
 - Less complexity
 - Simple pipework
 - Simplification in instrumentation
- Ability to alter the composition of the refrigerant mix
- Adjusting the refrigerant mix promotes process optimization
- Ease of extracting refrigerants from NG stream
- Cons:
- Facilities for recovering, storing, & blending of refrigerants
- Refrigerants are flammable but so is NG

Coolers (heat exchangers)

- Two main types of heat exchangers (HE): coil wound heat exchangers & plate-fin HE
- Coil wound (CWHE) can measure 5m in diameter & 70 m in length while weighing 300 tonnes
- Consist of thousands meters of tubing & can handle press. of 1,100 psig
- Note that it can take up to 30 months (ordering to installation)

Plate-fin heat exchangers (PFHE)

- Plate-fin HEs are less expensive than CWHE
- PHFE fabricated by more manufacturers (than CWHE)
- More popular than CHWE (because of few manufacturers for CWHE)

Thermodynamic calculations

Ideal cooling of NG (methane)

• Using the energy balance and mass conservation, the cooling load (Q) is

$$Q_{cool} = m_{out} h_{out} - m_{in} h_{in} \tag{1}$$

where Q_{cool} is the cooling load (J or BTU), $m_{in} \& m_{out}$ is the mass in & out, $h_{in} \& h_{out}$ is the enthalpy in & out (J/kg)

• Since $m_{in} = m_{out}$ then $m_{in} = m_{out} = m$. Therefore, eqn(1):

$$\hat{Q}_{cool} = \frac{Q_{cool}}{m} \tag{2}$$

 \hat{Q}_{cool} : heat (cooling load)/unit mass (kJ/kg) [Unit cooling load]

• 'Newton's law of cooling' states that for a constant *heat transfer coefficient* (*U*), the rate of heat loss of a body is proportional to the difference in temperature btw the body & its surroundings:

$$\frac{dQ}{dt} = hA(T(t) - T_{env}) = hA\Delta T(t)$$
(3)

Ideal cooling of NG (CH₄)

- Heat transfer coefficient (h_c) is the proportionality coefficient btw heat flux (heat flow per unit area, q=Q/A) & the thermodynamic driving force for the flow of heat (ie, temp. gradient, ΔT)
- Heat transfer during gas cooling is:

$$\dot{Q} = \frac{Q}{\Delta t} = U_c A \Delta T \tag{4}$$

where U_c is overall heat transfer coefficient/unit mass (W/m²·C) and \dot{Q} is the heat flux per unit mass (kJ/s)

Ideal vapor-compression cycle (2)

• Distinction btw reversible & ideal V-C cycles: the ideal VC cycle is not

internally reversible

• Refrigerant: ethyl ether

• Refrigerator:

$$COP_R = \frac{q_L}{W_{Net,in}} = \frac{h_1 - h_4}{h_2 - h_1}$$

• Heat pump:

$$COP_{HP} = \frac{q_H}{W_{Net,in}} = \frac{h_2 - h_3}{h_2 - h_1}$$

where $h_1 = h_{g@P1} \& h_3 = h_{f@P3}$

• *h* values read-off from refrigerant tables (eg, R-134a)

Actual vapor-compression cycle

- In reality, *irreversibilities* plaque the *ideal* VC cycle
 - Fluid friction (induces Δp)
 - Heat transfer *to* & *from* the surroundings

Coefficient of performance (COP)

- The efficiency of a refrigerator is expressed in terms of the coefficient of
- performance (COP) denoted by COP_R :

$$COP_{R} = \frac{Desired output}{Required input} = \frac{Q_{L}}{W_{net,in}}$$
(6)

• The COP of a refrigerator (or heat pump) which operates on the reversed Carnot cycle is termed a **Carnot refrigerator** (or a **Carnot heat pump**). The refrigerator efficiency is given by:

$$COP_{R} = \frac{1}{Q_{H}/Q_{L} - 1}$$

where Q_L is amount of heat absorbed from the low-temperature medium & Q_H is the amount of heat rejected to the high-temp medium. For a reversible refrigerator:

$$COP_{R,rev} = \frac{1}{T_H/T_L - 1} \tag{7}$$

Choosing among liquefaction processes

- Note that several of "off the shelf" refrigeration cycles are licensed
- Licensors include: Shell, ConocoPhillips, Air Products CI
- Complicated exercise which factors in:
 - o LNG plant throughput (e.g., MTPA)
 - Local (ambient) conditions
 - o Gas composition & reserve size
- Trend towards large "trains" (8 mtpa≈ 1.2bcf/d)

Choosing among liquefaction cycles (2)

- Nearly always trade-off between CAPEX & plant efficiency
- Ease of start-up
- Ability to manage changes in feedstock compositions
- Maintenance costs
- Safety considerations
- Previous experience (where it exists)

NG liquefaction costs

- ≈10% of the NG received by an LNG plant is used to condense the gas
- Refrigeration & liquefaction account for:
 - About 35-45% of CAPEX (20-30% of total project costs incl. regas + LNG ships)
 - Around 50% of the plant operating costs

Why is it so expensive?

- High cost of steel
- Often LNG plants are built at remote locations
- Strict design & safety levels
- Large volumes of refrigerants are used
- Redundancy alleviates risk of breakdowns but comes at a cost
- o Greenfields (vs. brownfields) come at a higher cost

Cost offsets:

• Exploit economies of scale i.e., larger liquefaction plants

Thanks for your attention!