LNG Transportation

Constantinos Hadjistassou, PhD

Associate prof.

Programme in Oil & Gas Engineering

University of Nicosia

Marine & Carbon Lab: www.carbonlab.eu

Dec., 2020

Overview

- 2
- Onshore tank boil-off gas
- LNG roll-over
- LNG history, market & trade
- The LNG challenge
- LNG tanker containment systems:
 - o 1. Moss type 2. Prismatic tanks
 - o 3. GTT NO96 (Ni 36-steel) 4. GTT Mark III (18% Cr/8% Ni-S/S)
- Onboard BOG re-liquefaction, propulsion systems
- LNG sloshing, shipboard roll-over, FLNG handling

World's LNG plants (2018)

Handling boil-off gas

- Cost of eliminating "boil-off" gas (BOG) may be prohibitive
- How does one tackle this problem?
- Selection of a storage design system should consider:
 - o a) Capital costs of storage tanks
 - o b) Cost of rejecting the boil-off gas from storage tank
 - o c) Capital & running costs of boil-off treatment
- Large tanks of 250,000m³ generate more BOG
- Type of storage facility matters:
 - o If a peak shaving facility replenished by LNG truck BOG could be fed into network
 - o If LNG tanks are part of a NG-LNG plant, BOG can be re-liquefied
- BOG generated during cargo export operations is re-liquefied
- BOG generated during NG liquefaction is recirculated in LNG process

LNG roll-over

• LNG composition

Component	Composition Range (mol%
Nitrogen	0.00 - 1.00
Methane	84.55 - 96.38
Ethane	2.00 - 11.41
Propane	0.35 - 3.21
Isobutane	0.00 - 0.70
n-Butane	0.00 - 1.30
Isopentane	0.00 - 0.02
n-Pentane	0.00 - 0.04
HHV gas	1021 - 1157
Btu/scf (kJ/Sm ³)	(38,000 - 43,090)
Wobbe number	1353 - 1432
GPM, on C ₂ + basis	0.71 - 4.08
$(m^3/1,000m^3)$	(0.094 - 0.543)
Source: McCartney (2	003).

Constituents	Molecular weight	Relative Density (Air = 1)	Gross Cal. Val. MJm ⁻³ (st)	Spontaneous Ignition Temperature OC
1	2	3	4	5
Methane	16	0.55	37.71	540
Ethane	30	1.04	66.35	515
Ethylene	28	0.97	59.72	425
Propane	44	1.53	93.94	450
Propylene	42	1.45	87.09	460
Butanes	58	2.00	n-121.80 iso-121.44	365-460
Butylene 1	56	1.94	114.98	385
Hydrogen	2	0.07	12.10	400
Petrol	80	3 to 4	174.5	280

LNG roll-over (2)

- LNG cargoes have different compositions
- Therefore, different LNG densities & vapour pressure
- Heat influx in the tank evaporates LNG
- Variations in ρ_{LNG} fractions result in *stratification* ($\Delta \rho_{LNG}$ =1 kg·m⁻³)
- 'Lighter' LNG components boil-off faster ('aging')
- → Slight increase in 'heavier' LNG

LNG roll-over (3)

- Incomplete mixing gives rise to different of LNG cells
- Little heat or mass transfer btw cells
- Discrete LNG layers suppress or delay LNG vaporisation
- *Rollover* is the rapid LNG vaporisation and rise of bottom layer to top
- Increased pressure imperils integrity of the tank lid

LNG roll-over (4)

- If 'density inversion' exceeds hydrostatic head phases 'flip' or 'rollover'
- 1971: First venting incident in La Spezia, Italy
- 1970-1982: 41 roll-over incidents in 22 plants
- Provisions to accommodate flux of 'boil-off':
 - Vent
 - Flare
 - Recompress or
 - Re-liquefy
- Important variables:
 - Mixing of different LNG cargoes
 - LNG density discrepancies

Roll-over counter-measures

9

Tank features:

- Monitor temperature to avoid excess heat influx in liquid layers
- Use tank fill methods to augment mixing:
 - Jet mixing
 - Bottom loading via standpipe, or
 - Top loading via splash plate
- Limit variability in LNG composition
- Mix tank contents by combining top & bottom tank filling points
- Use N₂>1 mol% (lowers ρ with vaporisation)

More roll-over countermeasures

- Promote LNG mixing by pump recirculation
- Pressure control of the tank
- Monitoring parameters (boil-off rate) related to stratification
- Connect high capacity vent to the tank
- Tank construction able to sustain reasonable internal pressure
- Store different cargoes in different tanks, where possible

Liquefied Natural Gas (LNG) history

- 1934: first attempt to export LNG dates in Hungary
- 1959: Louisiana to Chicago via Mississippi River
- 1964: *Methane Princess* 1st *large* scale LNG exports: Libya-UK
- Early 1980s: NG given impetus
- LNG vessels operate on 20 or so year long shuttle contracts
- LNG fleet capacity. 5MMm^3 (2008) $\rightarrow 35\text{MMm}^3$ ('07) $\rightarrow 55\text{MMm}^3$ ('10)
- LNG will meet 14 to 16% of global gas demand by 2015 (NGR, '07)
- Typical LNG shipload cost \$20-35 m, charter rate of LNG ship

Size: 27,400 m³

The LNG market

- 1973: several LNG projects were deferred or cancelled altogether
- 3rd largest seaborne energy trade after oil & coal. World energy use:
 - o 2005. Oil: 3.8 bn tons | Coal: 3 bn tons | NG: 2.5 bn tons
- 1983: 1/3 of the LNG fleet were laid-up
- 1980-'05. Oil: ME-Europe cost \$7–10/tonne; LNG: \$25–100/tonne,
- LNG ships move NG to power plants & some LNG to chemical plants

LNG market (2)

- As of 2011: 18 LNG exporting countries; 25 LNG importing countries
- Trade movement of NG (2012):
 - o Total NG exports: 1,033 bcm
 - o By pipelines: 705 bcm (imports, 68%)
 - o LNG: 327 bcm (exports, 32%)
- 3 biggest LNG exporters (2011):
 - O Qatar: 75.5 MT
 - o Malaysia: 25 MT
 - o Indonesia: 21.4 MT
- 3 largest LNG importers (2011):
 - o Japan: 78.8 MT
 - o South Korea: 35 MT
 - o UK: 18.6 MT

Major NG trade routes (2014)

LNG seaborne transport

- Ships committed to 15-20 year contracts
- Modern vessels feature on-board boil-off gas re-liquefaction
- LNG stored at atmospheric pressure at -163°C
- Need for dedicated loading & unloading facilities
- 50% of their time empty: laden voyage (full) & ballast leg (empty)
- Operational costs = f(laden trip days, sea state, ambient temp.,...)

LNG carriers

Dual-Fuel Diesel Electric/Tri-Fuel Diesel Electric (DFDE/TFDE)

525 LNG Vessels At end-2018

5,119 Trade voyages In 2018

Spot charter rates for a modern fuel-efficient tanker averaged \$76,000/day for the first two months of the year, an \$1% YOY Increase

Spot charter rates tapered off during the spring and summer months, averaging

\$56,000/day

Spot charter rates in Q4 2018 peaked at an all-time high of \$195,500/day and averaged \$150,000/day

This was short-lived and spot charter rates had returned to around \$74 000/day

\$74,000/day

Global LNG Fleet

+53

Conventional carriers added to the global fleet in 2018

Propulsion systems

41%

Active vessels with DFDE/TFDE, ME-GI, or XDF propulsion systems

Charter Market

Steam \$53,400 TFDE/DFDE \$85,500

> Average spot charter rate per day in 2018

Orderbook Growth

+52

Conventional carrier ordered in 2017

GU World LNG Report — 2019 Ed.

World LNG vessel fleet

- Projected world LNG fleet for 2013:
- Vessel sizes:
 - o Small: <120,000m³
 - o Standard: 120,000-175,000m³
 - O Q-flex: 216,000m³
 - O Q-max: 260,000m³
- Major LNG shipyards S. Korea:
 - o Daewoo, Samsung HI, Hyundai
- Japan:
 - Kawasaki
- Cost of LNG ships: \$130M (138,000m³)
- In 1995, same size ship cost: \$280M
- End of 2018: 525 LNG carriers (incl. FSRUs)

IGU World LNG Report — 2019 Ed.

World LNG carrier fleet stats

• End of 2018

Propulsion Type	LNG Fuel Consumption (tonnes/day)	Average Vessel Capacity	Typical Age	
Steam	175	<150,000	>10	
DFDE/TFDE	130	150,000-180,000	<15	
ME-GI	110	150,000-180,000	<5	
XDF	108	150,000-180,000	<1	
Steam Re-heat	140	150,000-180,000	Not Active	

DFDE/TFDE: Dual-Fuel Diesel Electric/Tri-Fuel Diesel Electric

XDF: Two-Stroke Engine

ME-GI: M-type, Electronically Controlled, Gas Injection

IGU World LNG Report — 2019 Ed.

Who owns the world's LNG fleet?

- Greek shipowners invested \$1.8bn on 11 LNG newbuildings in 2014
- Average cost/vessel ≈ \$165m
- Betting on LNG spot market & EU energy diversity

Trade-routes & transit bottlenecks

22

• Principal LNG trade routes:

- Persian Gulf to Far East
- Persian Gulf to Europe
- South Asia to North Asia

• LNG bottlenecks:

LNG ships

- Technological achievement
- High tech vessels operated by qualified crew
- 360 LNG carriers operating in deep-sea trade (end of 2011)
- Traditionally, prime mover was a steam turbine
- Nowadays, focus is on slow-speed diesel engines (<300rpm)
- High speed vessels: 18-20.5 knots (91% of ships)
- Expensive vessels with good safety record

Dedicated ships tied to specific routes

Particulars of LNG ships

24

	length overall	length between perpen- diculars	beam beam	draft	gross tonnage	tank capacity	type of tanks	vessel's name
	Lc	Lpp [m]	B [m]	T [m]	GT tys [t]	Vol thousands [m³]		
1	151	140	28	7.6	20.5	19	spherical	Surya Aki
2	216	-	33	9.5	40	36	membrane	LNG Lerici
3	239	226	40	11	66	87	membrane	Polar Alaska
4	272	259	47	10.5	80	125	spherical	Northwest Seaeagle
5	270 ÷ 275	260 ÷ 265	42	11÷12	90 ÷ 111	132 ÷ 135	membrane	Inigo Tapias Golar
6	285	274	43.5	12.5	97.5	145	membrane	Maran Gas Asclepius
7	289	-	49	11.9	118	145	spherical	Muscat LNG
9	315	-	50	12,0	136	216	membrane	Q-flex
10	340	-	54	12,0	-	270	membrane	Q-max

LNG carriers

- LNG vessels are *fully refrigerated* ships
- Two major containment systems:
 - Self-supporting tanks
 - o Integral/Membrane design
- Materials: aluminium, balsa wood, stain. steel, polyurethane
- Sophisticated and expensive vessels
- Subtle operational details

Special characteristics of LNG

- Cryogenic cargo at –163°C
- Low mass density, ρ_{LNG} =0.41-0.5t·m⁻³ (ρ_{H2O} =1t·m⁻³@25°C)
- Low dynamic viscosity, μ_{LNG} =188 μ kg/m-s (μ_{LNG} = ~0.9mkg/m-s)
- Flammable cargo (within range of 5-15% in air)
- Colourless & odourless cargo
- Generates boil-off gas; BOG rises on top of tank: ρ_{BOG} (@-100°C) $<\rho_{Air}$
- Cold burns may arise from contact with LNG *or* cryogenic surfaces
- Brittle fracture of metals due to low cargo temperature

The LNG carrier design challenge

27

Cryogenic ships need to:

- Endure the ultra-low temperature of the cargo
- Minimize or avoid free-surface effects
- Posses loading-unloading provisions
- Tolerate forces from super-cooled gas ("sloshing")
- o Handle Boil-Off Gas (BOG)
- Manage risks from flammable cargo
- o LNG loaded in liquefied form @ −163°C; BOG unavoidable
- Considerable segregated ballast tanks
- o Isolate hull from thermal stresses

• LNG tanks:

- Withstand contraction & expansion (thermal stresses)
- Minimize heat influx
- o Isolate hull from cold temperatures. T<−50 °C steel becomes brittle & breaks
- Monitor LNG parameters (eg, BOG)
- Stratification & roll-over hazards

LNG ship design considerations

- Older ship data may not inform solutions of modern problems eg structural & containment behavior
- Computational methods are widely used in industry
- Design challenges:
 - Vibrations (larger engines)
 - Propulsion systems
 - Hull fatigue
 - Sloshing in LNG membrane tanks
 - New routes (eg Artic's Northern sea route)

LNG tanker designs

- Four types of LNG containment systems:
 - o 1. Moss type
- 1. Free-standing or independent (Self-supporting)
- o 2. Prismatic tanks.
- o 3. GTT NO96 (Ni 36-steel)
- 4. GTT Mark III (18% Cr/8% Ni-S/S)
- **-2.** Membrane (non-free standing)

Thermal insulation systems

(30)

• Insulation materials aim to:

- Minimize heat influx into tanks & conserve cargo
- Protect hull from cryogenic cargo temperatures
- Minimize heat flow from hull into tanks
- Protect personnel from cold burns
- No insulation is 100% efficient more so if ΔT is ~200°C

Insulation qualities:

- Non-flammable
- Non hygroscopic
- Long life
- o Efficient over a wide range of temperatures (−170°C to 60°C)
- Low material & installation costs
- Lightweight
- Compact
- Easily applied and deformable

Some insulating materials

(31)

- 1. Balsa wood
- 2. Perlite
- 3. Polyurethane foam

1. Balsa wood

- Native tree to Brazil, Bolivia & Mexico. 30m tall
- Uses: model bridges, surfboards, wind turbine blades, GRP, composites
- High strength:weight ratio, high rigidity, compressive & tensile strength
- Tested extensively in temperatures down to -160°C
- Balsa wood tank insulation consists of wood strips, ρ =40-340kg/m³
- Insulation bonded together with resorcinol glue
- Applied in varying grain orientations in prefabricated flat panels
- Panels measure 1×3m by 0.25m thick

2. Perlite

- Perlite is a type of volcanic glass rock. Cost \$50/tonne
- Expanded perlite is commonly used as insulation
- Advantages:
 - \circ Possesses low thermal conductivity (λ)
 - Easy handling
 - Inexpensive
 - o Non-flammable
 - Low moisture retention.

Drawbacks:

- Characterized by lack of mechanical strength
- o Cannot offer a liquid or gas tight barrier
- Non-renewable
- o Applications limited to a min. cargo temperature of −55°C
- Water ingress can lead to loss of insulation strength & may be difficult to remove
- Silicon treatment prior to application lessens water content

2. Perlite (2)

3. Polyurethane foam

- Polyurethane Foam (PUF) is a cellular plastic
- PUFs exhibit a wide range of stiffness, hardness, densities
- Characterized by high strength to weight ratio
- Uses: foam seating, engine gaskets, home insulation panels, RIBs, ...
- Possessed low λ ; Relatively low cost insulation
- PUF strength governed by ρ
- Membrane tanks require high ρ_{PUF} : 90-100kg/m³
- Con: PUF readily absorbs moisture. Requires vapour barrier.

1(a). Self-supporting tanks

- Tanks expand & contract independently of vessel's hull
- Inner material: 9% nickel steel or aluminium (more costly)
- If the first layer is breached, LNG is contained by outer membrane
- Reliable & safe design
- Cons: a) Do not fully utilize ship's cargo capacity, b) costly construction

1(b). Moss system

- Features spherical Al (or Al alloy) or 9% Ni steel tanks
- Exhibit single layer of *styrofoam* 150-250mm thick
- Tanks independent of ship hull; mounted on hull
- Al or Al alloy: i) Resistance to brittle fracture, ii) Lower weight that steel, iii) cost more than steel
- No secondary containment; spherical shape's highly resistant to leaks

2. Membrane (or integral) tanks

- Non self-supporting. Most popular containment stms
- Possess primary & secondary membrane barriers
- Thermal insulation separates LNG tank from hull
- Membranes made up of Invar (36% Ni Fe) or SS
- Insulation: plywood boxes filled with Perlite
- Technigaz system exhibits SS membrane

"Leak-before-failure"

2. Membrane tanks (2)

39

• Pros:

- Better space utilization than self-supporting
- Less dead space for monitoring against leaks
- o Potential savings in tank material; no load carrying insulation
- o Identical construction methods for all tanker dimensions

Drawbacks:

- In the event of leak LNG may traverse inner & probably outer ship hull
- Hard to weld large membrane areas
- Considerable thermal stresses developed by LNG tanks extending over ship length

Therefore, divide hold into subdivisions.

Gaz Transport design

Inner Hull -- Outer Hull

> Water Ballast Spaces

3. Prismatic tank system

- Inner tank shell made-up of SS or invar (36% Ni iron)
- Require secondary barrier
- Stresses in prismatic tanks transmitted to frames, girders & stiffeners
- A breach in cargo containment might escape undetected
- GTT 96 Membrane; TG Mark III; CS1

3. Prismatic tank system (2)

- Need to insulate heat influx from hull into tank
- More slosh resistant (vs membrane type)
- Hull requires protection from cryogenic gas
- Second containment system offer 2nd line of defence against leak
- In case of leak there is sufficient time to discharge cargo in terminal

LNG design considerations

- Prismatic tanks better utilize hull volume (than self-supporting)
- Spherical tanks are leak resistant
- Self-supporting tanks withstand greater sloshing forces
- Typical insulation thickness: 270mm
- Prismatic & membrane containment stms are liable to cracks
- Careful loading & unloading procedures have to adhered to
- Membrane materials:
 - o Al
 - o Invar (36% Ni iron)
 - o 9% Ni steel
 - o SS

On-board BOG re-liquefaction

- Typically, 0.1%-0.25%/d of LNG cargo boils-off
- For a 25 day journey it amounts to ~4.4% of the cargo! \$425,000/trip!
- Options:
 - Feed ship engine(s) or auxiliary machinery
 - Re-liquefy & inject in LNG tanks
 - Vent or flare
- Prior 2006, LNG ships did not carry re-liquefaction systems
- Onboard liquefaction considerations:
 - Energy intensive process
 - Spatial constraints
 - Weight limitations
 - Operational limitations
 - Diurnal fluctuations
 - BOG rate is affected by route
 - \circ BOG rate = f(laden trip, ballast leg, sea state, tank spraying, tank sizes, insulation, ...)
 - No operation during return voyage or unloading

On-board BOG re-liquefaction (2)

- Capacity of BOG re-liquefaction plants ($228,000m^3$) = $\sim 6,500 \text{ kg/h}$
- Systems designed to: a) Handle peak BOG release, b) Operational within short notice
- Intermittency & short notice major considerations
- Power demand: 5.2MW (@-100°C gas inlet T)

Reverse Brayton (nitrogen) cycle

EcoRel, Cryostar

On-board BOG re-liquefaction (3)

- Larger size LNG ships financially justify on-board liquefaction
- Slow speed diesel engines more efficient than steam turbines
- Manufacturers:
 - Wärtsilä
 - Tractebel Gas Engineering
 - Cryostar

LNG propulsion systems

- Until 2006, LNG ships were powered by stream turbines
- 2006: first medium speed diesel engine LNG
- 2007: on-board liquefaction & slow-speed diesel engine(s) (<125rpm)
- Services speeds: 15-21knots
- Depending on vessel size dual engines
 & twin propellers are needed
- Highly skewed propellers lower prop. induced vibrations & *cavitation*
- Twin rudders improve vessel manoeuvrability
- Recently, slow-speed marine diesel ICE (on HFO) were introduced

LNG propulsion systems (2)

Steam turbines

• Pros:

- Little or no vibrations
- Relatively lightweight
- Minimal space requirements
- Comparatively low maintenance costs
- Can accommodate virtually any power rating
- o Dual fuel prime mover

Cons:

- Higher specific fuel consumption (vs diesel engines)
- Marine boilers
- Low efficiency of 28% (vs. 38-40%)

LNG propulsion systems (3)

- Q-Max LNG vessels powered by slow speed diesel engines
- Other vessels feature electric propulsion
- No dual fuel (NG & HFO) currently exist *commercially*
- Wärtsilä: "It has been demonstrated successfully for the *first time* that low-speed engine performance can fully comply with IMO... while the low pressure 2-stroke dual-fuel engine is operating on gas. Low pressure 2 stroke gas engine will be available commercially in 2014."

Two-stroke dual fuel (LNG) engines

• 9 Sept., 2014: Wärtsilä awarded milestone order to supply 2-stroke dual-fuel engines for large LNG carriers

Wärtsilä Corporation, Press release:

Two new large, 180,000 m³ LNG carriers being built by the Samsung Heavy Industries (SHI) in Korea on behalf of a collaboration between SK Shipping and Marubeni, are to be powered by 6-cylinder Wärtsilä X62DF 2-stroke dual-fuel engines. This is a milestone order for the marine sector as these will be the first large LNG carriers featuring Wärtsilä's 2-stroke dual-fuel technology. The order was placed in September and will be entered in Wärtsilä's September order book.

This development is set to revolutionize LNG transportation!

Sloshing

- 1970: First sloshing incident onboard Polar Alaska; detached pump
- Sloshing encountered in membrane & prismatic tanks types
- Sloshing refers to cargo fluid forces arising from rough sea conditions which can damage equipment or prismatic tank surfaces (eg, corners)
- Part load is a defining factor
- LNG carriers abide to loading restrictions:
 - o Either <10% full or >70% full. Lower risk: 0-10% or 70-100%
 - Ship speed

Sloshing (2)

- Sloshing experiments of air & water offer insight in *sloshing dynamics*
- Numerical simulations (CFD) help *benchmark* experimental rigs & *estimate* fluid loads
- BOG bubbles in tanks compound understanding of sloshing
- DNV class notation offers guidance for sloshing effects
- Membrane response, fatigue life & pump tower require evaluation

LNG carrier roll-over

- Circumstances reported in literature
- Individual LNG ship tanks may store 50,000m³
- Mixing different composition cargoes increases changes of stratification
- Avoid venting:
 - Expensive cargo
 - o Greenhouse gas (GWP: 72)
 - o LNG vapour is flammable
 - o LNG vapour is lighter than air
- Stratification in LNG tanks is a prerequisite for roll-over
- Reduction in BOG points to cargo stratification: 10%

LNG carrier roll-over (2)

- Non-uniform tank heat influx induces temperature inhomogeneities
- LNGs are not equipped with
 - Top-filling connections
 - Internal jet-nozzles

Countermeasures

- Avoid mixing different composition cargoes
- Bottom tank filling: recommended for lighter LNG fractions
- Top filling:
 - Suggested for heaver LNG streams
 - LNG ships do not usually possess top filling equipment
- If stratification is detected:
 - Transfer cargo from one tank into another
 - Circulate tank contents by jet nozzles
 - Recirculation of cargo within tank

Q-Max LNG class carriers

- World's largest (membrane type) LNG carriers
- 14 in operation; 14 sister ships under planning
- Capacity: 266,000 m³; ≈161MMm³ (gaseous state)
- Ship particulars: 345m×53.8m×12m
- Powered by twin propellers @ 91rpm
- Prime movers:
 - Twin-slow speed ICE
 - HFO powered
 - o 2×21,770 kW

How many Q-Max shiploads suffice to meet Cyprus' electricity demand for 1 year?

Q-Max

- Estimated cost: 300m-400m USD
- Reputed to be 60% fuel efficient (vs steam powered vessel)
- Estimated 40% less carbon emissions
- Featuring on-board BOG re-liquefaction plants
- High volume of BOG economically justifies onboard re-liquefaction

Q-Max

Floating LNG (FLNG)

58

- Innovation: onboard liquefaction & storage
- Petronas' Satu: 1.2mtpa (\$10bn)
- Shell's Prelude: 3.5-4mtpa (\$14bn)
 - 600,000 t; Length: 488m
- Working life: 30-40 yrs
- Issues: sloshing, maintenance, safety, energy footprint

Floating LNG

- Obviate need for submarine transmission pipeline(s)
- Innovation: onboard liquefaction
- 3.5-5.5 mtpa (2-3tcf)
- Working life: 30-40 yrs
- Issues:
 - LNG sloshing
 - Topsides: equipment miniaturization
 & access for maintenance
 - Hull: no dry-docking
 - Mooring systems: must not interfere with production & offloading
 - Safety considerations
 - Offloading: sea motions during transfer operations
 - Metocean design conditions:100-year; 10,000 year load

Courtesy: Royal Dutch Shel

Prelude FLNG project

- Expected to commence operation in 2017; offshore NW Australia
- Capacity: 5.3mtpa (3.6mpta *LNG*, 1.3mtpa *condensates*, 0.4mtpa *LPG*)
- Construction commenced in Oct., 2012
- FLNG Prelude 1st in the world
- Delivery date: 2017
- Cost: \$5-6 bn
- 600,000 t | Length: 488m
- Hull floated on Dec. 3rd, 2013
- Build by SHI, S. Korea

Prelude FLNG in numbers

- >600 engineers worked on the facility's design options
- 93m by 30m the turret secured to the seabed by mooring lines
- 50 tonnes/hr cold H₂O to be drawn from the ocean to help cool the NG
- 20-25 years is the time the Prelude FLNG facility will stay at the location to develop gas fields
- >200 km is the distance from the Prelude field to the nearest land
- 175 Olympic-sized swimming pools could hold the same amount of liquid as the facility's storage tanks
- **6 of the largest aircraft carriers** would displace the same amount of water as the facility

Floating NG liquefaction

62

• Fluids:

- \circ CH₄, C₂H₆, C₃H₈, C₄H₁₀
- o Condensates, CO₂, H₂O, etc

Prelude FLNG project (2)

Importing LNG: Floating Storage & Regas Unit (FSRU)

- Total of 27 FSRUs & 3 FSUs
- FRSU capacity (2018): 84 mpta
- Proven, reliable, competitive & flexible
- Pros: lower costs, shorter time-to-market, fewer regulatory & permitting hurdles

FSRU Toscana (Italy)

Floating Power Generation Plant (FPGP)

Energy Bridge Regas Vessel (EBRVTM)

Source: Excelerate

Pros & cons of RVs

Advantages:

- Alternative solution of onshore regas terminal
- O Does not require any onland space
- Ensures safety of other land-based facilities
- o Intermediate "solution" before the arrival of Cyprus nat gas

• Challenges:

- Temporary option e.g., 5 years
- Short time frame for investment recovery
- Contract terms
- Viability of project depends on NG throughout

Next...

- Cargo handling gear
- Onboard discharging equipment
- Sophisticated measuring, alarm systems & control electronics
- Loading arms

Properties of natural gas

 72

• Natural gas is: *odourless*, *colourless*, *tasteless*, *shapeless* & lighter than air *non-corrosive*, *non-toxic*

- Gas odorization helps detect gas leaks
- Mercaptans (or thiol) with a smell of rotten egg help smell the gas
- Smells due to methanethiol
- NG's flammable only in concentration 5-15% in air
- NG is lighter than air & rises up
- Consumers detect gas if conc ≈1%
 in air
- Burning of odorant does not liberate large sulphur amounts or toxicity

Properties	Value
Relative molar mass	17-20
Carbon content, weight %	73.3
Hydrogen content, weight %	23.9
Oxygen content, weight %	0.4
Hydrogen/carbon atomic ratio	3.0-4.0
Relative density, 15 °C	0.72 - 0.81
Boiling point, °C	-162
Autoignition temperature, °C	540-560
Octane number	120-130
Methane number	69-99
Stoichiometric air/fuel ratio, weight	17.2
Vapor flammability limits, volume %	5-15
Flammability limits	0.7 - 2.1
Lower heating/calorific value, MJ/kg	38-50
Stoichiometric lower heating value, MJ/kg	2.75
Methane concentration, volume %	80-99
Ethane concentration, volume %	2.7-4.6
Nitrogen concentration, volume %	0.1-15
Carbon dioxide concentration, volume %	1-5
Sulfur concentration, weight % ppm	<5
Specific CO ₂ formation, g/MJ	38-50

Flammability limits

- Flammability limit: a mixture of combustible gases & air burn only if the fuel concentration (vol or moles) lies within well defined upper & lower limits
- Pure methane (CH₄) has flammability limits of 5%-15% in air
- Ignition likelihood also affected by ignition sources (y-axis)
- Ignition sources:
 - Fire heaters (stoves)
 - Open flames
 - Motor vehicles, etc

Material	Specific Gravity (Air = 1)	Lower Flammable Limit (Vol %)	Upper Flammable Limit (Vol %)
	(All = 1)		
Methane	0.55	5.0	15.0
Ethane	1.04	3.0	12.4
Propane	1.52	2.1	9.5
n-Butane	2.01	1.8	8.4

Nat gas safety issues

- Methane is colorless, odorless, non-toxic, non-corrosive
- Can be detected using "methanethiol"
- LNG is non-flammable in its liquid state
- Nat gas burns only in:
 - o Presence of a spark, oxygen and within flammability limits
- Safety levels:
 - Flare nat gas, layout of LNG plant & equipment
 - o Division of the LNG plant into blast zones & use of appropriate materials
 - Use of fire or explosion resistant materials, firefighting systems, leakage detectors
 - Leakage & explosion simulations

Thanks for your attention!