LNG Handling and Facilities

Constantinos Hadjistassou, PhD
Associate prof
Programme in Oil & Gas Engineering
University of Nicosia

Marine & Carbon Lab: www.carbonlab.eu

Dec., 2020

Overview

- LNG cargo handling
- Sea cargo transfer
- Loading arms
- Regasification equipment

LNG cargo handling

- Ship either tied to a pier or anchored at sea
- LNG offloaded either in gaseous or liquefied state
- LNG pipes or mooring buoy facilitates cargo transfer
- NG vapour return line needed for liquid NG pumping
- Avoid gas hydrates during subsea pumping
- Equipment ought to withstand thermal cycling

STS cargo transfer

- Transfer of cargo btw two anchored, moored or drifting vessels
- Not to be confused with naval underway replenishment
- Extensively used in industry for oil/products transfer
- Pneumatic *fenders* facilitate STS: avoid metal contact, min. friction & absorb motions

Sea LNG cargo transfer

- Loading of ship factors in vessel stability
- LNG loaded into different tanks
- Ballasting concurrent with LNG loading

LNG loading arms

- Why loading arms & not a flexible hose?
- Loading arms permit the safe & fast transfer of LNG
- Material: Al, SS, 9% Ni steel
- Hydraulically operated
- Usually two arms for loading & one for vapour return
- Emergency release coupling

LNG Loading arms (2)

- Interconnections:
 - Simple bolted connections
 - Quick Connect/Disconnect Couplings (QCQD)
- QCDC are hydraulically operated
- Discharge/loading rate dictated by material & structural limitations
- High capacity pumps discharge rate: 10,000m³/h

Pipe systems

- Need to withstand cryogenic temperatures w/o brittle fracture
- Accommodate expansion/contraction (4mm/m in Al)
- Usually SS 18/8 (Cr/Ni) or extruded Al
- Insulation: polyurethane foam
- Water ingress poses problems to insulation

LNG pumps

9

External motor type

- o Rate of 20-100 tonnes/h
- Difficulty of sealing drive shaft to motor
- Impeller from SS 18/8 or bronze

• *Submerged motor* type:

- Pump directly coupled to motor
- Completely submerged in LNG
- Made of SS

Submerged pumps divided into:

- Low-head (ship & shore)
- Multi-stage (peak-shaving)
- Bottom suction prevents vapor lock
- Emphasis on reliability, safety & performance

Regasification equipment

- For near-shore base load: sea-water evaporator
- Extruded Al pipes facilitate heat transfer
- Water flow rate: ~3.5t/h
- Gas exit temperature: 0°C

Regas equipment (2)

- For peak shaving facilities gas fired vaporizers are preferred
- Pros:
 - o a) Short notice
 - o b) flexibility
- Energy intensive process
- System reliability of paramount importance
- Cost of regas facilities: \$100m-\$2bn
- Regas costs: \$0.5/MMBtu

